配置一个RL Agent#
在之前的教程中,我们看到了如何使用 Stable-Baselines3 库训练RL智能体以解决cartpole平衡任务。在本教程中,我们将看到如何配置训练过程以使用不同的RL库和不同的训练算法。
在目录 scripts/reinforcement_learning 中,您将找到不同RL库的脚本。这些按照库名称命名的子目录进行组织。每个子目录包含该库的训练和回放脚本。
要为特定任务配置学习库,您需要为学习代理创建一个配置文件。这个配置文件用于创建学习代理的实例,并用于配置训练过程。类似于在:ref:`tutorial-register-rl-env-gym`教程中显示的环境注册,您可以使用``gymnasium.register``方法注册学习代理。
代码#
作为示例,我们将查看``isaaclab_tasks``包中为任务``Isaac-Cartpole-v0``包含的配置。这是我们在:ref:`tutorial-run-rl-training`教程中使用的相同任务。
gym.register(
id="Isaac-Cartpole-v0",
entry_point="isaaclab.envs:ManagerBasedRLEnv",
disable_env_checker=True,
kwargs={
"env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
"rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml",
"rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerCfg",
"rsl_rl_with_symmetry_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerWithSymmetryCfg",
"skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml",
"sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml",
},
代码详解#
在属性`kwargs`下,我们可以看到不同学习库的配置。 键是库的名称,值是配置实例的路径。 这个配置实例可以是字符串、类或类的实例。 例如,键`"rl_games_cfg_entry_point"的值是指向RL-Games库配置YAML文件的字符串。 同时,键"rsl_rl_cfg_entry_point"`的值指向RSL-RL库的配置类。
用于指定代理配置类的模式与用于指定环境配置入口点的模式非常相似。这意味着以下内容是等效的:
指定配置入口点为字符串
from . import agents
gym.register(
id="Isaac-Cartpole-v0",
entry_point="isaaclab.envs:ManagerBasedRLEnv",
disable_env_checker=True,
kwargs={
"env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
"rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerCfg",
},
)
指定配置入口点为一个类
from . import agents
gym.register(
id="Isaac-Cartpole-v0",
entry_point="isaaclab.envs:ManagerBasedRLEnv",
disable_env_checker=True,
kwargs={
"env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
"rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.CartpolePPORunnerCfg,
},
)
第一个代码块是指定配置入口的首选方式。第二个代码块等同于第一个代码块,但会导致配置类的导入,从而减慢导入时间。这就是为什么我们建议使用字符串作为配置入口的原因。
所有位于 scripts/reinforcement_learning 目录中的脚本都默认配置为从 kwargs 字典中读取 <library_name>_cfg_entry_point 以获取配置实例。
例如,以下代码块显示了 train.py 脚本如何读取 Stable-Baselines3 库的配置实例:
使用SB3的train.py代码
1# Copyright (c) 2022-2025, The Isaac Lab Project Developers (https://github.com/isaac-sim/IsaacLab/blob/main/CONTRIBUTORS.md).
2# All rights reserved.
3#
4# SPDX-License-Identifier: BSD-3-Clause
5
6
7"""Script to train RL agent with Stable Baselines3."""
8
9"""Launch Isaac Sim Simulator first."""
10
11import argparse
12import contextlib
13import signal
14import sys
15from pathlib import Path
16
17from isaaclab.app import AppLauncher
18
19# add argparse arguments
20parser = argparse.ArgumentParser(description="Train an RL agent with Stable-Baselines3.")
21parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
22parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
23parser.add_argument("--video_interval", type=int, default=2000, help="Interval between video recordings (in steps).")
24parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
25parser.add_argument("--task", type=str, default=None, help="Name of the task.")
26parser.add_argument(
27 "--agent", type=str, default="sb3_cfg_entry_point", help="Name of the RL agent configuration entry point."
28)
29parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment")
30parser.add_argument("--log_interval", type=int, default=100_000, help="Log data every n timesteps.")
31parser.add_argument("--checkpoint", type=str, default=None, help="Continue the training from checkpoint.")
32parser.add_argument("--max_iterations", type=int, default=None, help="RL Policy training iterations.")
33parser.add_argument("--export_io_descriptors", action="store_true", default=False, help="Export IO descriptors.")
34parser.add_argument(
35 "--keep_all_info",
36 action="store_true",
37 default=False,
38 help="Use a slower SB3 wrapper but keep all the extra training info.",
39)
40parser.add_argument(
41 "--ray-proc-id", "-rid", type=int, default=None, help="Automatically configured by Ray integration, otherwise None."
42)
43# append AppLauncher cli args
44AppLauncher.add_app_launcher_args(parser)
45# parse the arguments
46args_cli, hydra_args = parser.parse_known_args()
47# always enable cameras to record video
48if args_cli.video:
49 args_cli.enable_cameras = True
50
51# clear out sys.argv for Hydra
52sys.argv = [sys.argv[0]] + hydra_args
53
54# launch omniverse app
55app_launcher = AppLauncher(args_cli)
56simulation_app = app_launcher.app
57
58
59def cleanup_pbar(*args):
60 """
61 A small helper to stop training and
62 cleanup progress bar properly on ctrl+c
63 """
64 import gc
65
66 tqdm_objects = [obj for obj in gc.get_objects() if "tqdm" in type(obj).__name__]
67 for tqdm_object in tqdm_objects:
68 if "tqdm_rich" in type(tqdm_object).__name__:
69 tqdm_object.close()
70 raise KeyboardInterrupt
71
72
73# disable KeyboardInterrupt override
74signal.signal(signal.SIGINT, cleanup_pbar)
75
76"""Rest everything follows."""
77
78import gymnasium as gym
79import logging
80import numpy as np
81import os
82import random
83import time
84from datetime import datetime
85
86from stable_baselines3 import PPO
87from stable_baselines3.common.callbacks import CheckpointCallback, LogEveryNTimesteps
88from stable_baselines3.common.vec_env import VecNormalize
89
90from isaaclab.envs import (
91 DirectMARLEnv,
92 DirectMARLEnvCfg,
93 DirectRLEnvCfg,
94 ManagerBasedRLEnvCfg,
95 multi_agent_to_single_agent,
96)
97from isaaclab.utils.dict import print_dict
98from isaaclab.utils.io import dump_yaml
99
100from isaaclab_rl.sb3 import Sb3VecEnvWrapper, process_sb3_cfg
101
102import isaaclab_tasks # noqa: F401
103from isaaclab_tasks.utils.hydra import hydra_task_config
104
105# import logger
106logger = logging.getLogger(__name__)
107# PLACEHOLDER: Extension template (do not remove this comment)
108
109
110@hydra_task_config(args_cli.task, args_cli.agent)
111def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg | DirectMARLEnvCfg, agent_cfg: dict):
112 """Train with stable-baselines agent."""
113 # randomly sample a seed if seed = -1
114 if args_cli.seed == -1:
115 args_cli.seed = random.randint(0, 10000)
116
117 # override configurations with non-hydra CLI arguments
118 env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs
119 agent_cfg["seed"] = args_cli.seed if args_cli.seed is not None else agent_cfg["seed"]
120 # max iterations for training
121 if args_cli.max_iterations is not None:
122 agent_cfg["n_timesteps"] = args_cli.max_iterations * agent_cfg["n_steps"] * env_cfg.scene.num_envs
123
124 # set the environment seed
125 # note: certain randomizations occur in the environment initialization so we set the seed here
126 env_cfg.seed = agent_cfg["seed"]
127 env_cfg.sim.device = args_cli.device if args_cli.device is not None else env_cfg.sim.device
128
129 # directory for logging into
130 run_info = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
131 log_root_path = os.path.abspath(os.path.join("logs", "sb3", args_cli.task))
132 print(f"[INFO] Logging experiment in directory: {log_root_path}")
133 # The Ray Tune workflow extracts experiment name using the logging line below, hence, do not change it (see PR #2346, comment-2819298849)
134 print(f"Exact experiment name requested from command line: {run_info}")
135 log_dir = os.path.join(log_root_path, run_info)
136 # dump the configuration into log-directory
137 dump_yaml(os.path.join(log_dir, "params", "env.yaml"), env_cfg)
138 dump_yaml(os.path.join(log_dir, "params", "agent.yaml"), agent_cfg)
139
140 # save command used to run the script
141 command = " ".join(sys.orig_argv)
142 (Path(log_dir) / "command.txt").write_text(command)
143
144 # post-process agent configuration
145 agent_cfg = process_sb3_cfg(agent_cfg, env_cfg.scene.num_envs)
146 # read configurations about the agent-training
147 policy_arch = agent_cfg.pop("policy")
148 n_timesteps = agent_cfg.pop("n_timesteps")
149
150 # set the IO descriptors export flag if requested
151 if isinstance(env_cfg, ManagerBasedRLEnvCfg):
152 env_cfg.export_io_descriptors = args_cli.export_io_descriptors
153 else:
154 logger.warning(
155 "IO descriptors are only supported for manager based RL environments. No IO descriptors will be exported."
156 )
157
158 # set the log directory for the environment (works for all environment types)
159 env_cfg.log_dir = log_dir
160
161 # create isaac environment
162 env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
163
164 # convert to single-agent instance if required by the RL algorithm
165 if isinstance(env.unwrapped, DirectMARLEnv):
166 env = multi_agent_to_single_agent(env)
167
168 # wrap for video recording
169 if args_cli.video:
170 video_kwargs = {
171 "video_folder": os.path.join(log_dir, "videos", "train"),
172 "step_trigger": lambda step: step % args_cli.video_interval == 0,
173 "video_length": args_cli.video_length,
174 "disable_logger": True,
175 }
176 print("[INFO] Recording videos during training.")
177 print_dict(video_kwargs, nesting=4)
178 env = gym.wrappers.RecordVideo(env, **video_kwargs)
179
180 start_time = time.time()
181
182 # wrap around environment for stable baselines
183 env = Sb3VecEnvWrapper(env, fast_variant=not args_cli.keep_all_info)
184
185 norm_keys = {"normalize_input", "normalize_value", "clip_obs"}
186 norm_args = {}
187 for key in norm_keys:
188 if key in agent_cfg:
189 norm_args[key] = agent_cfg.pop(key)
190
191 if norm_args and norm_args.get("normalize_input"):
192 print(f"Normalizing input, {norm_args=}")
193 env = VecNormalize(
194 env,
195 training=True,
196 norm_obs=norm_args["normalize_input"],
197 norm_reward=norm_args.get("normalize_value", False),
198 clip_obs=norm_args.get("clip_obs", 100.0),
199 gamma=agent_cfg["gamma"],
200 clip_reward=np.inf,
201 )
202
203 # create agent from stable baselines
204 agent = PPO(policy_arch, env, verbose=1, tensorboard_log=log_dir, **agent_cfg)
205 if args_cli.checkpoint is not None:
206 agent = agent.load(args_cli.checkpoint, env, print_system_info=True)
207
208 # callbacks for agent
209 checkpoint_callback = CheckpointCallback(save_freq=1000, save_path=log_dir, name_prefix="model", verbose=2)
210 callbacks = [checkpoint_callback, LogEveryNTimesteps(n_steps=args_cli.log_interval)]
211
212 # train the agent
213 with contextlib.suppress(KeyboardInterrupt):
214 agent.learn(
215 total_timesteps=n_timesteps,
216 callback=callbacks,
217 progress_bar=True,
218 log_interval=None,
219 )
220 # save the final model
221 agent.save(os.path.join(log_dir, "model"))
222 print("Saving to:")
223 print(os.path.join(log_dir, "model.zip"))
224
225 if isinstance(env, VecNormalize):
226 print("Saving normalization")
227 env.save(os.path.join(log_dir, "model_vecnormalize.pkl"))
228
229 print(f"Training time: {round(time.time() - start_time, 2)} seconds")
230
231 # close the simulator
232 env.close()
233
234
235if __name__ == "__main__":
236 # run the main function
237 main()
238 # close sim app
239 simulation_app.close()
参数 --agent 用于指定要使用的学习库。这用于从 kwargs 字典中检索配置实例。您可以通过传递 --agent 参数来手动指定替代配置实例。
代码执行#
由于cartpole平衡任务,RSL-RL 库提供两个配置实例,我们可以使用 --agent 参数来指定要使用的配置实例。
使用标准PPO配置进行训练:
# standard PPO training ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \ --run_name ppo
使用具有对称增强的PPO配置进行训练:
# PPO training with symmetry augmentation ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \ --agent rsl_rl_with_symmetry_cfg_entry_point \ --run_name ppo_with_symmetry_data_augmentation # you can use hydra to disable symmetry augmentation but enable mirror loss computation ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \ --agent rsl_rl_with_symmetry_cfg_entry_point \ --run_name ppo_without_symmetry_data_augmentation \ agent.algorithm.symmetry_cfg.use_data_augmentation=false
--run_name 参数用于指定运行的名称。这用于在``logs/rsl_rl/cartpole``目录中为运行创建一个目录。