配置一个RL Agent

配置一个RL Agent#

在之前的教程中,我们看到了如何使用 Stable-Baselines3 库训练RL智能体以解决cartpole平衡任务。在本教程中,我们将看到如何配置训练过程以使用不同的RL库和不同的训练算法。

在目录 scripts/reinforcement_learning 中,您将找到不同RL库的脚本。这些按照库名称命名的子目录进行组织。每个子目录包含该库的训练和回放脚本。

要为特定任务配置学习库,您需要为学习代理创建一个配置文件。这个配置文件用于创建学习代理的实例,并用于配置训练过程。类似于在:ref:`tutorial-register-rl-env-gym`教程中显示的环境注册,您可以使用``gymnasium.register``方法注册学习代理。

代码#

作为示例,我们将查看``isaaclab_tasks``包中为任务``Isaac-Cartpole-v0``包含的配置。这是我们在:ref:`tutorial-run-rl-training`教程中使用的相同任务。

gym.register(
    id="Isaac-Cartpole-v0",
    entry_point="isaaclab.envs:ManagerBasedRLEnv",
    disable_env_checker=True,
    kwargs={
        "env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
        "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml",
        "rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerCfg",
        "rsl_rl_with_symmetry_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerWithSymmetryCfg",
        "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml",
        "sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml",
    },

代码详解#

在属性`kwargs`下,我们可以看到不同学习库的配置。 键是库的名称,值是配置实例的路径。 这个配置实例可以是字符串、类或类的实例。 例如,键`”rl_games_cfg_entry_point”的值是指向RL-Games库配置YAML文件的字符串。 同时,键”rsl_rl_cfg_entry_point”`的值指向RSL-RL库的配置类。

用于指定代理配置类的模式与用于指定环境配置入口点的模式非常相似。这意味着以下内容是等效的:

指定配置入口点为字符串
from . import agents

gym.register(
   id="Isaac-Cartpole-v0",
   entry_point="isaaclab.envs:ManagerBasedRLEnv",
   disable_env_checker=True,
   kwargs={
      "env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
      "rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerCfg",
   },
)
指定配置入口点为一个类
from . import agents

gym.register(
   id="Isaac-Cartpole-v0",
   entry_point="isaaclab.envs:ManagerBasedRLEnv",
   disable_env_checker=True,
   kwargs={
      "env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
      "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.CartpolePPORunnerCfg,
   },
)

第一个代码块是指定配置入口的首选方式。第二个代码块等同于第一个代码块,但会导致配置类的导入,从而减慢导入时间。这就是为什么我们建议使用字符串作为配置入口的原因。

所有位于 scripts/reinforcement_learning 目录中的脚本都默认配置为从 kwargs 字典中读取 <library_name>_cfg_entry_point 以获取配置实例。

例如,以下代码块显示了 train.py 脚本如何读取 Stable-Baselines3 库的配置实例:

使用SB3的train.py代码
  1# Copyright (c) 2022-2025, The Isaac Lab Project Developers (https://github.com/isaac-sim/IsaacLab/blob/main/CONTRIBUTORS.md).
  2# All rights reserved.
  3#
  4# SPDX-License-Identifier: BSD-3-Clause
  5
  6
  7"""Script to train RL agent with Stable Baselines3."""
  8
  9"""Launch Isaac Sim Simulator first."""
 10
 11import argparse
 12import contextlib
 13import signal
 14import sys
 15from pathlib import Path
 16
 17from isaaclab.app import AppLauncher
 18
 19# add argparse arguments
 20parser = argparse.ArgumentParser(description="Train an RL agent with Stable-Baselines3.")
 21parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
 22parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
 23parser.add_argument("--video_interval", type=int, default=2000, help="Interval between video recordings (in steps).")
 24parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
 25parser.add_argument("--task", type=str, default=None, help="Name of the task.")
 26parser.add_argument(
 27    "--agent", type=str, default="sb3_cfg_entry_point", help="Name of the RL agent configuration entry point."
 28)
 29parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment")
 30parser.add_argument("--log_interval", type=int, default=100_000, help="Log data every n timesteps.")
 31parser.add_argument("--checkpoint", type=str, default=None, help="Continue the training from checkpoint.")
 32parser.add_argument("--max_iterations", type=int, default=None, help="RL Policy training iterations.")
 33parser.add_argument(
 34    "--keep_all_info",
 35    action="store_true",
 36    default=False,
 37    help="Use a slower SB3 wrapper but keep all the extra training info.",
 38)
 39# append AppLauncher cli args
 40AppLauncher.add_app_launcher_args(parser)
 41# parse the arguments
 42args_cli, hydra_args = parser.parse_known_args()
 43# always enable cameras to record video
 44if args_cli.video:
 45    args_cli.enable_cameras = True
 46
 47# clear out sys.argv for Hydra
 48sys.argv = [sys.argv[0]] + hydra_args
 49
 50# launch omniverse app
 51app_launcher = AppLauncher(args_cli)
 52simulation_app = app_launcher.app
 53
 54
 55def cleanup_pbar(*args):
 56    """
 57    A small helper to stop training and
 58    cleanup progress bar properly on ctrl+c
 59    """
 60    import gc
 61
 62    tqdm_objects = [obj for obj in gc.get_objects() if "tqdm" in type(obj).__name__]
 63    for tqdm_object in tqdm_objects:
 64        if "tqdm_rich" in type(tqdm_object).__name__:
 65            tqdm_object.close()
 66    raise KeyboardInterrupt
 67
 68
 69# disable KeyboardInterrupt override
 70signal.signal(signal.SIGINT, cleanup_pbar)
 71
 72"""Rest everything follows."""
 73
 74import gymnasium as gym
 75import numpy as np
 76import os
 77import random
 78from datetime import datetime
 79
 80from stable_baselines3 import PPO
 81from stable_baselines3.common.callbacks import CheckpointCallback, LogEveryNTimesteps
 82from stable_baselines3.common.vec_env import VecNormalize
 83
 84from isaaclab.envs import (
 85    DirectMARLEnv,
 86    DirectMARLEnvCfg,
 87    DirectRLEnvCfg,
 88    ManagerBasedRLEnvCfg,
 89    multi_agent_to_single_agent,
 90)
 91from isaaclab.utils.dict import print_dict
 92from isaaclab.utils.io import dump_pickle, dump_yaml
 93
 94from isaaclab_rl.sb3 import Sb3VecEnvWrapper, process_sb3_cfg
 95
 96import isaaclab_tasks  # noqa: F401
 97from isaaclab_tasks.utils.hydra import hydra_task_config
 98
 99# PLACEHOLDER: Extension template (do not remove this comment)
100
101
102@hydra_task_config(args_cli.task, args_cli.agent)
103def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg | DirectMARLEnvCfg, agent_cfg: dict):
104    """Train with stable-baselines agent."""
105    # randomly sample a seed if seed = -1
106    if args_cli.seed == -1:
107        args_cli.seed = random.randint(0, 10000)
108
109    # override configurations with non-hydra CLI arguments
110    env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs
111    agent_cfg["seed"] = args_cli.seed if args_cli.seed is not None else agent_cfg["seed"]
112    # max iterations for training
113    if args_cli.max_iterations is not None:
114        agent_cfg["n_timesteps"] = args_cli.max_iterations * agent_cfg["n_steps"] * env_cfg.scene.num_envs
115
116    # set the environment seed
117    # note: certain randomizations occur in the environment initialization so we set the seed here
118    env_cfg.seed = agent_cfg["seed"]
119    env_cfg.sim.device = args_cli.device if args_cli.device is not None else env_cfg.sim.device
120
121    # directory for logging into
122    run_info = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
123    log_root_path = os.path.abspath(os.path.join("logs", "sb3", args_cli.task))
124    print(f"[INFO] Logging experiment in directory: {log_root_path}")
125    # The Ray Tune workflow extracts experiment name using the logging line below, hence, do not change it (see PR #2346, comment-2819298849)
126    print(f"Exact experiment name requested from command line: {run_info}")
127    log_dir = os.path.join(log_root_path, run_info)
128    # dump the configuration into log-directory
129    dump_yaml(os.path.join(log_dir, "params", "env.yaml"), env_cfg)
130    dump_yaml(os.path.join(log_dir, "params", "agent.yaml"), agent_cfg)
131    dump_pickle(os.path.join(log_dir, "params", "env.pkl"), env_cfg)
132    dump_pickle(os.path.join(log_dir, "params", "agent.pkl"), agent_cfg)
133
134    # save command used to run the script
135    command = " ".join(sys.orig_argv)
136    (Path(log_dir) / "command.txt").write_text(command)
137
138    # post-process agent configuration
139    agent_cfg = process_sb3_cfg(agent_cfg, env_cfg.scene.num_envs)
140    # read configurations about the agent-training
141    policy_arch = agent_cfg.pop("policy")
142    n_timesteps = agent_cfg.pop("n_timesteps")
143
144    # create isaac environment
145    env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
146
147    # convert to single-agent instance if required by the RL algorithm
148    if isinstance(env.unwrapped, DirectMARLEnv):
149        env = multi_agent_to_single_agent(env)
150
151    # wrap for video recording
152    if args_cli.video:
153        video_kwargs = {
154            "video_folder": os.path.join(log_dir, "videos", "train"),
155            "step_trigger": lambda step: step % args_cli.video_interval == 0,
156            "video_length": args_cli.video_length,
157            "disable_logger": True,
158        }
159        print("[INFO] Recording videos during training.")
160        print_dict(video_kwargs, nesting=4)
161        env = gym.wrappers.RecordVideo(env, **video_kwargs)
162
163    # wrap around environment for stable baselines
164    env = Sb3VecEnvWrapper(env, fast_variant=not args_cli.keep_all_info)
165
166    norm_keys = {"normalize_input", "normalize_value", "clip_obs"}
167    norm_args = {}
168    for key in norm_keys:
169        if key in agent_cfg:
170            norm_args[key] = agent_cfg.pop(key)
171
172    if norm_args and norm_args.get("normalize_input"):
173        print(f"Normalizing input, {norm_args=}")
174        env = VecNormalize(
175            env,
176            training=True,
177            norm_obs=norm_args["normalize_input"],
178            norm_reward=norm_args.get("normalize_value", False),
179            clip_obs=norm_args.get("clip_obs", 100.0),
180            gamma=agent_cfg["gamma"],
181            clip_reward=np.inf,
182        )
183
184    # create agent from stable baselines
185    agent = PPO(policy_arch, env, verbose=1, tensorboard_log=log_dir, **agent_cfg)
186    if args_cli.checkpoint is not None:
187        agent = agent.load(args_cli.checkpoint, env, print_system_info=True)
188
189    # callbacks for agent
190    checkpoint_callback = CheckpointCallback(save_freq=1000, save_path=log_dir, name_prefix="model", verbose=2)
191    callbacks = [checkpoint_callback, LogEveryNTimesteps(n_steps=args_cli.log_interval)]
192
193    # train the agent
194    with contextlib.suppress(KeyboardInterrupt):
195        agent.learn(
196            total_timesteps=n_timesteps,
197            callback=callbacks,
198            progress_bar=True,
199            log_interval=None,
200        )
201    # save the final model
202    agent.save(os.path.join(log_dir, "model"))
203    print("Saving to:")
204    print(os.path.join(log_dir, "model.zip"))
205
206    if isinstance(env, VecNormalize):
207        print("Saving normalization")
208        env.save(os.path.join(log_dir, "model_vecnormalize.pkl"))
209
210    # close the simulator
211    env.close()
212
213
214if __name__ == "__main__":
215    # run the main function
216    main()
217    # close sim app
218    simulation_app.close()

参数 --agent 用于指定要使用的学习库。这用于从 kwargs 字典中检索配置实例。您可以通过传递 --agent 参数来手动指定替代配置实例。

代码执行#

由于cartpole平衡任务,RSL-RL 库提供两个配置实例,我们可以使用 --agent 参数来指定要使用的配置实例。

  • 使用标准PPO配置进行训练:

    # standard PPO training
    ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \
      --run_name ppo
    
  • 使用具有对称增强的PPO配置进行训练:

    # PPO training with symmetry augmentation
    ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \
      --agent rsl_rl_with_symmetry_cfg_entry_point \
      --run_name ppo_with_symmetry_data_augmentation
    
    # you can use hydra to disable symmetry augmentation but enable mirror loss computation
    ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \
      --agent rsl_rl_with_symmetry_cfg_entry_point \
      --run_name ppo_without_symmetry_data_augmentation \
      agent.algorithm.symmetry_cfg.use_data_augmentation=false
    

--run_name 参数用于指定运行的名称。这用于在``logs/rsl_rl/cartpole``目录中为运行创建一个目录。