配置一个RL Agent#
在之前的教程中,我们看到了如何使用 Stable-Baselines3 库训练RL智能体以解决cartpole平衡任务。在本教程中,我们将看到如何配置训练过程以使用不同的RL库和不同的训练算法。
在目录 scripts/reinforcement_learning
中,您将找到不同RL库的脚本。这些按照库名称命名的子目录进行组织。每个子目录包含该库的训练和回放脚本。
要为特定任务配置学习库,您需要为学习代理创建一个配置文件。这个配置文件用于创建学习代理的实例,并用于配置训练过程。类似于在:ref:`tutorial-register-rl-env-gym`教程中显示的环境注册,您可以使用``gymnasium.register``方法注册学习代理。
代码#
作为示例,我们将查看``isaaclab_tasks``包中为任务``Isaac-Cartpole-v0``包含的配置。这是我们在:ref:`tutorial-run-rl-training`教程中使用的相同任务。
gym.register(
id="Isaac-Cartpole-v0",
entry_point="isaaclab.envs:ManagerBasedRLEnv",
disable_env_checker=True,
kwargs={
"env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
"rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml",
"rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerCfg",
"rsl_rl_with_symmetry_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerWithSymmetryCfg",
"skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml",
"sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml",
},
代码详解#
在属性`kwargs`下,我们可以看到不同学习库的配置。 键是库的名称,值是配置实例的路径。 这个配置实例可以是字符串、类或类的实例。 例如,键`”rl_games_cfg_entry_point”的值是指向RL-Games库配置YAML文件的字符串。 同时,键”rsl_rl_cfg_entry_point”`的值指向RSL-RL库的配置类。
用于指定代理配置类的模式与用于指定环境配置入口点的模式非常相似。这意味着以下内容是等效的:
指定配置入口点为字符串
from . import agents
gym.register(
id="Isaac-Cartpole-v0",
entry_point="isaaclab.envs:ManagerBasedRLEnv",
disable_env_checker=True,
kwargs={
"env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
"rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerCfg",
},
)
指定配置入口点为一个类
from . import agents
gym.register(
id="Isaac-Cartpole-v0",
entry_point="isaaclab.envs:ManagerBasedRLEnv",
disable_env_checker=True,
kwargs={
"env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
"rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.CartpolePPORunnerCfg,
},
)
第一个代码块是指定配置入口的首选方式。第二个代码块等同于第一个代码块,但会导致配置类的导入,从而减慢导入时间。这就是为什么我们建议使用字符串作为配置入口的原因。
所有位于 scripts/reinforcement_learning
目录中的脚本都默认配置为从 kwargs
字典中读取 <library_name>_cfg_entry_point
以获取配置实例。
例如,以下代码块显示了 train.py
脚本如何读取 Stable-Baselines3 库的配置实例:
使用SB3的train.py代码
1# Copyright (c) 2022-2025, The Isaac Lab Project Developers (https://github.com/isaac-sim/IsaacLab/blob/main/CONTRIBUTORS.md).
2# All rights reserved.
3#
4# SPDX-License-Identifier: BSD-3-Clause
5
6
7"""Script to train RL agent with Stable Baselines3."""
8
9"""Launch Isaac Sim Simulator first."""
10
11import argparse
12import contextlib
13import signal
14import sys
15from pathlib import Path
16
17from isaaclab.app import AppLauncher
18
19# add argparse arguments
20parser = argparse.ArgumentParser(description="Train an RL agent with Stable-Baselines3.")
21parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
22parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
23parser.add_argument("--video_interval", type=int, default=2000, help="Interval between video recordings (in steps).")
24parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
25parser.add_argument("--task", type=str, default=None, help="Name of the task.")
26parser.add_argument(
27 "--agent", type=str, default="sb3_cfg_entry_point", help="Name of the RL agent configuration entry point."
28)
29parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment")
30parser.add_argument("--log_interval", type=int, default=100_000, help="Log data every n timesteps.")
31parser.add_argument("--checkpoint", type=str, default=None, help="Continue the training from checkpoint.")
32parser.add_argument("--max_iterations", type=int, default=None, help="RL Policy training iterations.")
33parser.add_argument(
34 "--keep_all_info",
35 action="store_true",
36 default=False,
37 help="Use a slower SB3 wrapper but keep all the extra training info.",
38)
39# append AppLauncher cli args
40AppLauncher.add_app_launcher_args(parser)
41# parse the arguments
42args_cli, hydra_args = parser.parse_known_args()
43# always enable cameras to record video
44if args_cli.video:
45 args_cli.enable_cameras = True
46
47# clear out sys.argv for Hydra
48sys.argv = [sys.argv[0]] + hydra_args
49
50# launch omniverse app
51app_launcher = AppLauncher(args_cli)
52simulation_app = app_launcher.app
53
54
55def cleanup_pbar(*args):
56 """
57 A small helper to stop training and
58 cleanup progress bar properly on ctrl+c
59 """
60 import gc
61
62 tqdm_objects = [obj for obj in gc.get_objects() if "tqdm" in type(obj).__name__]
63 for tqdm_object in tqdm_objects:
64 if "tqdm_rich" in type(tqdm_object).__name__:
65 tqdm_object.close()
66 raise KeyboardInterrupt
67
68
69# disable KeyboardInterrupt override
70signal.signal(signal.SIGINT, cleanup_pbar)
71
72"""Rest everything follows."""
73
74import gymnasium as gym
75import numpy as np
76import os
77import random
78from datetime import datetime
79
80from stable_baselines3 import PPO
81from stable_baselines3.common.callbacks import CheckpointCallback, LogEveryNTimesteps
82from stable_baselines3.common.vec_env import VecNormalize
83
84from isaaclab.envs import (
85 DirectMARLEnv,
86 DirectMARLEnvCfg,
87 DirectRLEnvCfg,
88 ManagerBasedRLEnvCfg,
89 multi_agent_to_single_agent,
90)
91from isaaclab.utils.dict import print_dict
92from isaaclab.utils.io import dump_pickle, dump_yaml
93
94from isaaclab_rl.sb3 import Sb3VecEnvWrapper, process_sb3_cfg
95
96import isaaclab_tasks # noqa: F401
97from isaaclab_tasks.utils.hydra import hydra_task_config
98
99# PLACEHOLDER: Extension template (do not remove this comment)
100
101
102@hydra_task_config(args_cli.task, args_cli.agent)
103def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg | DirectMARLEnvCfg, agent_cfg: dict):
104 """Train with stable-baselines agent."""
105 # randomly sample a seed if seed = -1
106 if args_cli.seed == -1:
107 args_cli.seed = random.randint(0, 10000)
108
109 # override configurations with non-hydra CLI arguments
110 env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs
111 agent_cfg["seed"] = args_cli.seed if args_cli.seed is not None else agent_cfg["seed"]
112 # max iterations for training
113 if args_cli.max_iterations is not None:
114 agent_cfg["n_timesteps"] = args_cli.max_iterations * agent_cfg["n_steps"] * env_cfg.scene.num_envs
115
116 # set the environment seed
117 # note: certain randomizations occur in the environment initialization so we set the seed here
118 env_cfg.seed = agent_cfg["seed"]
119 env_cfg.sim.device = args_cli.device if args_cli.device is not None else env_cfg.sim.device
120
121 # directory for logging into
122 run_info = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
123 log_root_path = os.path.abspath(os.path.join("logs", "sb3", args_cli.task))
124 print(f"[INFO] Logging experiment in directory: {log_root_path}")
125 # The Ray Tune workflow extracts experiment name using the logging line below, hence, do not change it (see PR #2346, comment-2819298849)
126 print(f"Exact experiment name requested from command line: {run_info}")
127 log_dir = os.path.join(log_root_path, run_info)
128 # dump the configuration into log-directory
129 dump_yaml(os.path.join(log_dir, "params", "env.yaml"), env_cfg)
130 dump_yaml(os.path.join(log_dir, "params", "agent.yaml"), agent_cfg)
131 dump_pickle(os.path.join(log_dir, "params", "env.pkl"), env_cfg)
132 dump_pickle(os.path.join(log_dir, "params", "agent.pkl"), agent_cfg)
133
134 # save command used to run the script
135 command = " ".join(sys.orig_argv)
136 (Path(log_dir) / "command.txt").write_text(command)
137
138 # post-process agent configuration
139 agent_cfg = process_sb3_cfg(agent_cfg, env_cfg.scene.num_envs)
140 # read configurations about the agent-training
141 policy_arch = agent_cfg.pop("policy")
142 n_timesteps = agent_cfg.pop("n_timesteps")
143
144 # create isaac environment
145 env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
146
147 # convert to single-agent instance if required by the RL algorithm
148 if isinstance(env.unwrapped, DirectMARLEnv):
149 env = multi_agent_to_single_agent(env)
150
151 # wrap for video recording
152 if args_cli.video:
153 video_kwargs = {
154 "video_folder": os.path.join(log_dir, "videos", "train"),
155 "step_trigger": lambda step: step % args_cli.video_interval == 0,
156 "video_length": args_cli.video_length,
157 "disable_logger": True,
158 }
159 print("[INFO] Recording videos during training.")
160 print_dict(video_kwargs, nesting=4)
161 env = gym.wrappers.RecordVideo(env, **video_kwargs)
162
163 # wrap around environment for stable baselines
164 env = Sb3VecEnvWrapper(env, fast_variant=not args_cli.keep_all_info)
165
166 norm_keys = {"normalize_input", "normalize_value", "clip_obs"}
167 norm_args = {}
168 for key in norm_keys:
169 if key in agent_cfg:
170 norm_args[key] = agent_cfg.pop(key)
171
172 if norm_args and norm_args.get("normalize_input"):
173 print(f"Normalizing input, {norm_args=}")
174 env = VecNormalize(
175 env,
176 training=True,
177 norm_obs=norm_args["normalize_input"],
178 norm_reward=norm_args.get("normalize_value", False),
179 clip_obs=norm_args.get("clip_obs", 100.0),
180 gamma=agent_cfg["gamma"],
181 clip_reward=np.inf,
182 )
183
184 # create agent from stable baselines
185 agent = PPO(policy_arch, env, verbose=1, tensorboard_log=log_dir, **agent_cfg)
186 if args_cli.checkpoint is not None:
187 agent = agent.load(args_cli.checkpoint, env, print_system_info=True)
188
189 # callbacks for agent
190 checkpoint_callback = CheckpointCallback(save_freq=1000, save_path=log_dir, name_prefix="model", verbose=2)
191 callbacks = [checkpoint_callback, LogEveryNTimesteps(n_steps=args_cli.log_interval)]
192
193 # train the agent
194 with contextlib.suppress(KeyboardInterrupt):
195 agent.learn(
196 total_timesteps=n_timesteps,
197 callback=callbacks,
198 progress_bar=True,
199 log_interval=None,
200 )
201 # save the final model
202 agent.save(os.path.join(log_dir, "model"))
203 print("Saving to:")
204 print(os.path.join(log_dir, "model.zip"))
205
206 if isinstance(env, VecNormalize):
207 print("Saving normalization")
208 env.save(os.path.join(log_dir, "model_vecnormalize.pkl"))
209
210 # close the simulator
211 env.close()
212
213
214if __name__ == "__main__":
215 # run the main function
216 main()
217 # close sim app
218 simulation_app.close()
参数 --agent
用于指定要使用的学习库。这用于从 kwargs
字典中检索配置实例。您可以通过传递 --agent
参数来手动指定替代配置实例。
代码执行#
由于cartpole平衡任务,RSL-RL 库提供两个配置实例,我们可以使用 --agent
参数来指定要使用的配置实例。
使用标准PPO配置进行训练:
# standard PPO training ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \ --run_name ppo
使用具有对称增强的PPO配置进行训练:
# PPO training with symmetry augmentation ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \ --agent rsl_rl_with_symmetry_cfg_entry_point \ --run_name ppo_with_symmetry_data_augmentation # you can use hydra to disable symmetry augmentation but enable mirror loss computation ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \ --agent rsl_rl_with_symmetry_cfg_entry_point \ --run_name ppo_without_symmetry_data_augmentation \ agent.algorithm.symmetry_cfg.use_data_augmentation=false
--run_name
参数用于指定运行的名称。这用于在``logs/rsl_rl/cartpole``目录中为运行创建一个目录。