强化学习包装器

强化学习包装器#

我们提供对不同强化学习库的包装器。这些包装器将环境中的数据转换为各自库的函数参数和返回类型。

RL-Games#

  • 使用 RL-GamesIsaac-Ant-v0 上训练智能体

    # install python module (for rl-games)
    ./isaaclab.sh -i rl_games
    # run script for training
    ./isaaclab.sh -p source/standalone/workflows/rl_games/train.py --task Isaac-Ant-v0 --headless
    # run script for playing with 32 environments
    ./isaaclab.sh -p source/standalone/workflows/rl_games/play.py --task Isaac-Ant-v0 --num_envs 32 --checkpoint /PATH/TO/model.pth
    # run script for recording video of a trained agent (requires installing `ffmpeg`)
    ./isaaclab.sh -p source/standalone/workflows/rl_games/play.py --task Isaac-Ant-v0 --headless --video --video_length 200
    
    :: install python module (for rl-games)
    isaaclab.bat -i rl_games
    :: run script for training
    isaaclab.bat -p source\standalone\workflows\rl_games\train.py --task Isaac-Ant-v0 --headless
    :: run script for playing with 32 environments
    isaaclab.bat -p source\standalone\workflows\rl_games\play.py --task Isaac-Ant-v0 --num_envs 32 --checkpoint /PATH/TO/model.pth
    :: run script for recording video of a trained agent (requires installing `ffmpeg`)
    isaaclab.bat -p source\standalone\workflows\rl_games\play.py --task Isaac-Ant-v0 --headless --video --video_length 200
    

RSL-RL#

  • RSL-RLIsaac-Reach-Franka-v0 上训练一个agent:

    # install python module (for rsl-rl)
    ./isaaclab.sh -i rsl_rl
    # run script for training
    ./isaaclab.sh -p source/standalone/workflows/rsl_rl/train.py --task Isaac-Reach-Franka-v0 --headless
    # run script for playing with 32 environments
    ./isaaclab.sh -p source/standalone/workflows/rsl_rl/play.py --task Isaac-Reach-Franka-v0 --num_envs 32 --load_run run_folder_name --checkpoint model.pt
    # run script for recording video of a trained agent (requires installing `ffmpeg`)
    ./isaaclab.sh -p source/standalone/workflows/rsl_rl/play.py --task Isaac-Reach-Franka-v0 --headless --video --video_length 200
    
    :: install python module (for rsl-rl)
    isaaclab.bat -i rsl_rl
    :: run script for training
    isaaclab.bat -p source\standalone\workflows\rsl_rl\train.py --task Isaac-Reach-Franka-v0 --headless
    :: run script for playing with 32 environments
    isaaclab.bat -p source\standalone\workflows\rsl_rl\play.py --task Isaac-Reach-Franka-v0 --num_envs 32 --load_run run_folder_name --checkpoint model.pt
    :: run script for recording video of a trained agent (requires installing `ffmpeg`)
    isaaclab.bat -p source\standalone\workflows\rsl_rl\play.py --task Isaac-Reach-Franka-v0 --headless --video --video_length 200
    

SKRL#

  • 使用 SKRLIsaac-Reach-Franka-v0 上训练智能体:

    # install python module (for skrl)
    ./isaaclab.sh -i skrl
    # run script for training
    ./isaaclab.sh -p source/standalone/workflows/skrl/train.py --task Isaac-Reach-Franka-v0 --headless
    # run script for playing with 32 environments
    ./isaaclab.sh -p source/standalone/workflows/skrl/play.py --task Isaac-Reach-Franka-v0 --num_envs 32 --checkpoint /PATH/TO/model.pt
    # run script for recording video of a trained agent (requires installing `ffmpeg`)
    ./isaaclab.sh -p source/standalone/workflows/skrl/play.py --task Isaac-Reach-Franka-v0 --headless --video --video_length 200
    
    :: install python module (for skrl)
    isaaclab.bat -i skrl
    :: run script for training
    isaaclab.bat -p source\standalone\workflows\skrl\train.py --task Isaac-Reach-Franka-v0 --headless
    :: run script for playing with 32 environments
    isaaclab.bat -p source\standalone\workflows\skrl\play.py --task Isaac-Reach-Franka-v0 --num_envs 32 --checkpoint /PATH/TO/model.pt
    :: run script for recording video of a trained agent (requires installing `ffmpeg`)
    isaaclab.bat -p source\standalone\workflows\skrl\play.py --task Isaac-Reach-Franka-v0 --headless --video --video_length 200
    

    警告

    建议在继续安装 skrl 及其依赖项之前,手动 安装 JAX ,因为 JAX 默认安装的是其 CPU 版本。例如, pip install -U "jax[cuda12]" 可以用来为 CUDA 12 安装 JAX。有关更多详细信息,请访问 skrl 安装 页面。

    # install python module (for skrl)
    ./isaaclab.sh -i skrl
    # install skrl dependencies for JAX
    ./isaaclab.sh -p -m pip install skrl["jax"]
    # run script for training
    ./isaaclab.sh -p source/standalone/workflows/skrl/train.py --task Isaac-Reach-Franka-v0 --headless --ml_framework jax
    # run script for playing with 32 environments
    ./isaaclab.sh -p source/standalone/workflows/skrl/play.py --task Isaac-Reach-Franka-v0 --num_envs 32  --ml_framework jax --checkpoint /PATH/TO/model.pt
    # run script for recording video of a trained agent (requires installing `ffmpeg`)
    ./isaaclab.sh -p source/standalone/workflows/skrl/play.py --task Isaac-Reach-Franka-v0 --headless --ml_framework jax --video --video_length 200
    
    • 用skrl训练多智能体环境 Isaac-Shadow-Hand-Over-Direct-v0

    # install python module (for skrl)
    ./isaaclab.sh -i skrl
    # run script for training with the MAPPO algorithm (IPPO is also supported)
    ./isaaclab.sh -p source/standalone/workflows/skrl/train.py --task Isaac-Shadow-Hand-Over-Direct-v0 --headless --algorithm MAPPO
    # run script for playing with 32 environments with the MAPPO algorithm (IPPO is also supported)
    ./isaaclab.sh -p source/standalone/workflows/skrl/play.py --task Isaac-Shadow-Hand-Over-Direct-v0 --num_envs 32 --algorithm MAPPO --checkpoint /PATH/TO/model.pt
    
    :: install python module (for skrl)
    isaaclab.bat -i skrl
    :: run script for training with the MAPPO algorithm (IPPO is also supported)
    isaaclab.bat -p source\standalone\workflows\skrl\train.py --task Isaac-Shadow-Hand-Over-Direct-v0 --headless --algorithm MAPPO
    :: run script for playing with 32 environments with the MAPPO algorithm (IPPO is also supported)
    isaaclab.bat -p source\standalone\workflows\skrl\play.py --task Isaac-Shadow-Hand-Over-Direct-v0 --num_envs 32 --algorithm MAPPO --checkpoint /PATH/TO/model.pt
    

Stable-Baselines3#

  • Isaac-Cartpole-v0 上使用 Stable-Baselines3 训练一个智能体:

    # install python module (for stable-baselines3)
    ./isaaclab.sh -i sb3
    # run script for training
    # note: we set the device to cpu since SB3 doesn't optimize for GPU anyway
    ./isaaclab.sh -p source/standalone/workflows/sb3/train.py --task Isaac-Cartpole-v0 --headless --device cpu
    # run script for playing with 32 environments
    ./isaaclab.sh -p source/standalone/workflows/sb3/play.py --task Isaac-Cartpole-v0 --num_envs 32 --checkpoint /PATH/TO/model.zip
    # run script for recording video of a trained agent (requires installing `ffmpeg`)
    ./isaaclab.sh -p source/standalone/workflows/sb3/play.py --task Isaac-Cartpole-v0 --headless --video --video_length 200
    
    :: install python module (for stable-baselines3)
    isaaclab.bat -i sb3
    :: run script for training
    :: note: we set the device to cpu since SB3 doesn't optimize for GPU anyway
    isaaclab.bat -p source\standalone\workflows\sb3\train.py --task Isaac-Cartpole-v0 --headless --device cpu
    :: run script for playing with 32 environments
    isaaclab.bat -p source\standalone\workflows\sb3\play.py --task Isaac-Cartpole-v0 --num_envs 32 --checkpoint /PATH/TO/model.zip
    :: run script for recording video of a trained agent (requires installing `ffmpeg`)
    isaaclab.bat -p source\standalone\workflows\sb3\play.py --task Isaac-Cartpole-v0 --headless --video --video_length 200
    

所有上述脚本将训练进度记录到存储库根目录中的 logs 目录中的 Tensorboard 。logs目录遵循模式 logs/<library>/<task>/<date-time> ,其中 <library> 为学习框架的名称, <task> 为任务名称, <date-time> 为执行训练脚本的时间戳。

要查看日志,请运行:

# execute from the root directory of the repository
./isaaclab.sh -p -m tensorboard.main --logdir=logs
:: execute from the root directory of the repository
isaaclab.bat -p -m tensorboard.main --logdir=logs