强化学习包装器#
我们提供对不同强化学习库的包装器。这些包装器将环境中的数据转换为各自库的函数参数和返回类型。
RL-Games#
使用 RL-Games 在
Isaac-Ant-v0
上训练智能体# install python module (for rl-games) ./isaaclab.sh -i rl_games # run script for training ./isaaclab.sh -p source/standalone/workflows/rl_games/train.py --task Isaac-Ant-v0 --headless # run script for playing with 32 environments ./isaaclab.sh -p source/standalone/workflows/rl_games/play.py --task Isaac-Ant-v0 --num_envs 32 --checkpoint /PATH/TO/model.pth # run script for recording video of a trained agent (requires installing `ffmpeg`) ./isaaclab.sh -p source/standalone/workflows/rl_games/play.py --task Isaac-Ant-v0 --headless --video --video_length 200
:: install python module (for rl-games) isaaclab.bat -i rl_games :: run script for training isaaclab.bat -p source\standalone\workflows\rl_games\train.py --task Isaac-Ant-v0 --headless :: run script for playing with 32 environments isaaclab.bat -p source\standalone\workflows\rl_games\play.py --task Isaac-Ant-v0 --num_envs 32 --checkpoint /PATH/TO/model.pth :: run script for recording video of a trained agent (requires installing `ffmpeg`) isaaclab.bat -p source\standalone\workflows\rl_games\play.py --task Isaac-Ant-v0 --headless --video --video_length 200
RSL-RL#
用 RSL-RL 在
Isaac-Reach-Franka-v0
上训练一个agent:# install python module (for rsl-rl) ./isaaclab.sh -i rsl_rl # run script for training ./isaaclab.sh -p source/standalone/workflows/rsl_rl/train.py --task Isaac-Reach-Franka-v0 --headless # run script for playing with 32 environments ./isaaclab.sh -p source/standalone/workflows/rsl_rl/play.py --task Isaac-Reach-Franka-v0 --num_envs 32 --load_run run_folder_name --checkpoint model.pt # run script for recording video of a trained agent (requires installing `ffmpeg`) ./isaaclab.sh -p source/standalone/workflows/rsl_rl/play.py --task Isaac-Reach-Franka-v0 --headless --video --video_length 200
:: install python module (for rsl-rl) isaaclab.bat -i rsl_rl :: run script for training isaaclab.bat -p source\standalone\workflows\rsl_rl\train.py --task Isaac-Reach-Franka-v0 --headless :: run script for playing with 32 environments isaaclab.bat -p source\standalone\workflows\rsl_rl\play.py --task Isaac-Reach-Franka-v0 --num_envs 32 --load_run run_folder_name --checkpoint model.pt :: run script for recording video of a trained agent (requires installing `ffmpeg`) isaaclab.bat -p source\standalone\workflows\rsl_rl\play.py --task Isaac-Reach-Franka-v0 --headless --video --video_length 200
SKRL#
使用 SKRL 在
Isaac-Reach-Franka-v0
上训练智能体:# install python module (for skrl) ./isaaclab.sh -i skrl # run script for training ./isaaclab.sh -p source/standalone/workflows/skrl/train.py --task Isaac-Reach-Franka-v0 --headless # run script for playing with 32 environments ./isaaclab.sh -p source/standalone/workflows/skrl/play.py --task Isaac-Reach-Franka-v0 --num_envs 32 --checkpoint /PATH/TO/model.pt # run script for recording video of a trained agent (requires installing `ffmpeg`) ./isaaclab.sh -p source/standalone/workflows/skrl/play.py --task Isaac-Reach-Franka-v0 --headless --video --video_length 200
:: install python module (for skrl) isaaclab.bat -i skrl :: run script for training isaaclab.bat -p source\standalone\workflows\skrl\train.py --task Isaac-Reach-Franka-v0 --headless :: run script for playing with 32 environments isaaclab.bat -p source\standalone\workflows\skrl\play.py --task Isaac-Reach-Franka-v0 --num_envs 32 --checkpoint /PATH/TO/model.pt :: run script for recording video of a trained agent (requires installing `ffmpeg`) isaaclab.bat -p source\standalone\workflows\skrl\play.py --task Isaac-Reach-Franka-v0 --headless --video --video_length 200
警告
建议在继续安装 skrl 及其依赖项之前,手动 安装 JAX ,因为 JAX 默认安装的是其 CPU 版本。例如,
pip install -U "jax[cuda12]"
可以用来为 CUDA 12 安装 JAX。有关更多详细信息,请访问 skrl 安装 页面。# install python module (for skrl) ./isaaclab.sh -i skrl # install skrl dependencies for JAX ./isaaclab.sh -p -m pip install skrl["jax"] # run script for training ./isaaclab.sh -p source/standalone/workflows/skrl/train.py --task Isaac-Reach-Franka-v0 --headless --ml_framework jax # run script for playing with 32 environments ./isaaclab.sh -p source/standalone/workflows/skrl/play.py --task Isaac-Reach-Franka-v0 --num_envs 32 --ml_framework jax --checkpoint /PATH/TO/model.pt # run script for recording video of a trained agent (requires installing `ffmpeg`) ./isaaclab.sh -p source/standalone/workflows/skrl/play.py --task Isaac-Reach-Franka-v0 --headless --ml_framework jax --video --video_length 200
用skrl训练多智能体环境
Isaac-Shadow-Hand-Over-Direct-v0
。
# install python module (for skrl) ./isaaclab.sh -i skrl # run script for training with the MAPPO algorithm (IPPO is also supported) ./isaaclab.sh -p source/standalone/workflows/skrl/train.py --task Isaac-Shadow-Hand-Over-Direct-v0 --headless --algorithm MAPPO # run script for playing with 32 environments with the MAPPO algorithm (IPPO is also supported) ./isaaclab.sh -p source/standalone/workflows/skrl/play.py --task Isaac-Shadow-Hand-Over-Direct-v0 --num_envs 32 --algorithm MAPPO --checkpoint /PATH/TO/model.pt
:: install python module (for skrl) isaaclab.bat -i skrl :: run script for training with the MAPPO algorithm (IPPO is also supported) isaaclab.bat -p source\standalone\workflows\skrl\train.py --task Isaac-Shadow-Hand-Over-Direct-v0 --headless --algorithm MAPPO :: run script for playing with 32 environments with the MAPPO algorithm (IPPO is also supported) isaaclab.bat -p source\standalone\workflows\skrl\play.py --task Isaac-Shadow-Hand-Over-Direct-v0 --num_envs 32 --algorithm MAPPO --checkpoint /PATH/TO/model.pt
Stable-Baselines3#
在
Isaac-Cartpole-v0
上使用 Stable-Baselines3 训练一个智能体:# install python module (for stable-baselines3) ./isaaclab.sh -i sb3 # run script for training # note: we set the device to cpu since SB3 doesn't optimize for GPU anyway ./isaaclab.sh -p source/standalone/workflows/sb3/train.py --task Isaac-Cartpole-v0 --headless --device cpu # run script for playing with 32 environments ./isaaclab.sh -p source/standalone/workflows/sb3/play.py --task Isaac-Cartpole-v0 --num_envs 32 --checkpoint /PATH/TO/model.zip # run script for recording video of a trained agent (requires installing `ffmpeg`) ./isaaclab.sh -p source/standalone/workflows/sb3/play.py --task Isaac-Cartpole-v0 --headless --video --video_length 200
:: install python module (for stable-baselines3) isaaclab.bat -i sb3 :: run script for training :: note: we set the device to cpu since SB3 doesn't optimize for GPU anyway isaaclab.bat -p source\standalone\workflows\sb3\train.py --task Isaac-Cartpole-v0 --headless --device cpu :: run script for playing with 32 environments isaaclab.bat -p source\standalone\workflows\sb3\play.py --task Isaac-Cartpole-v0 --num_envs 32 --checkpoint /PATH/TO/model.zip :: run script for recording video of a trained agent (requires installing `ffmpeg`) isaaclab.bat -p source\standalone\workflows\sb3\play.py --task Isaac-Cartpole-v0 --headless --video --video_length 200
所有上述脚本将训练进度记录到存储库根目录中的 logs
目录中的 Tensorboard 。logs目录遵循模式 logs/<library>/<task>/<date-time>
,其中 <library>
为学习框架的名称, <task>
为任务名称, <date-time>
为执行训练脚本的时间戳。
要查看日志,请运行:
# execute from the root directory of the repository
./isaaclab.sh -p -m tensorboard.main --logdir=logs
:: execute from the root directory of the repository
isaaclab.bat -p -m tensorboard.main --logdir=logs