使用运动空间控制器#

有时,使用差分IK控制器控制机器人的末端执行器姿势是不够的。例如,我们可能想要在任务空间中强制执行非常特定的姿势跟踪误差动态,用关节力/扭矩命令驱动机器人,或者在控制其他方向的运动时在特定方向施加接触力(例如,用布擦洗桌子表面)。在这种任务中,我们可以使用操作空间控制器(OSC)。

操作空间控制的参考资料:

  1. O Khatib. A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Journal of Robotics and Automation, 3(1):43–53, 1987. URL http://dx.doi.org/10.1109/JRA.1987.1087068.

  2. Robot Dynamics Lecture Notes by Marco Hutter (ETH Zurich). URL https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2017/RD_HS2017script.pdf

在本教程中,我们将学习如何使用OSC来控制机器人。我们将使用 controllers.OperationalSpaceController 类,在其他所有方向上跟踪所需的末端执行器姿态的同时,施加一个垂直于倾斜墙面的恒定力。

代码#

教程对应于 source/standalone/tutorials/05_controllers 目录中的 run_osc.py 脚本。

run_osc.py的代码
  1# Copyright (c) 2022-2024, The Isaac Lab Project Developers.
  2# All rights reserved.
  3#
  4# SPDX-License-Identifier: BSD-3-Clause
  5
  6"""
  7This script demonstrates how to use the operational space controller (OSC) with the simulator.
  8
  9The OSC controller can be configured in different modes. It uses the dynamical quantities such as Jacobians and
 10mass matricescomputed by PhysX.
 11
 12.. code-block:: bash
 13
 14    # Usage
 15    ./isaaclab.sh -p source/standalone/tutorials/05_controllers/run_osc.py
 16
 17"""
 18
 19"""Launch Isaac Sim Simulator first."""
 20
 21import argparse
 22
 23from omni.isaac.lab.app import AppLauncher
 24
 25# add argparse arguments
 26parser = argparse.ArgumentParser(description="Tutorial on using the operational space controller.")
 27parser.add_argument("--num_envs", type=int, default=128, help="Number of environments to spawn.")
 28# append AppLauncher cli args
 29AppLauncher.add_app_launcher_args(parser)
 30# parse the arguments
 31args_cli = parser.parse_args()
 32
 33# launch omniverse app
 34app_launcher = AppLauncher(args_cli)
 35simulation_app = app_launcher.app
 36
 37"""Rest everything follows."""
 38
 39import torch
 40
 41import omni.isaac.lab.sim as sim_utils
 42from omni.isaac.lab.assets import Articulation, AssetBaseCfg
 43from omni.isaac.lab.controllers import OperationalSpaceController, OperationalSpaceControllerCfg
 44from omni.isaac.lab.markers import VisualizationMarkers
 45from omni.isaac.lab.markers.config import FRAME_MARKER_CFG
 46from omni.isaac.lab.scene import InteractiveScene, InteractiveSceneCfg
 47from omni.isaac.lab.sensors import ContactSensorCfg
 48from omni.isaac.lab.utils import configclass
 49from omni.isaac.lab.utils.math import (
 50    combine_frame_transforms,
 51    matrix_from_quat,
 52    quat_inv,
 53    quat_rotate_inverse,
 54    subtract_frame_transforms,
 55)
 56
 57##
 58# Pre-defined configs
 59##
 60from omni.isaac.lab_assets import FRANKA_PANDA_HIGH_PD_CFG  # isort:skip
 61
 62
 63@configclass
 64class SceneCfg(InteractiveSceneCfg):
 65    """Configuration for a simple scene with a tilted wall."""
 66
 67    # ground plane
 68    ground = AssetBaseCfg(
 69        prim_path="/World/defaultGroundPlane",
 70        spawn=sim_utils.GroundPlaneCfg(),
 71    )
 72
 73    # lights
 74    dome_light = AssetBaseCfg(
 75        prim_path="/World/Light", spawn=sim_utils.DomeLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75))
 76    )
 77
 78    # Tilted wall
 79    tilted_wall = AssetBaseCfg(
 80        prim_path="{ENV_REGEX_NS}/TiltedWall",
 81        spawn=sim_utils.CuboidCfg(
 82            size=(2.0, 1.5, 0.01),
 83            collision_props=sim_utils.CollisionPropertiesCfg(),
 84            visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(1.0, 0.0, 0.0), opacity=0.1),
 85            rigid_props=sim_utils.RigidBodyPropertiesCfg(kinematic_enabled=True),
 86            activate_contact_sensors=True,
 87        ),
 88        init_state=AssetBaseCfg.InitialStateCfg(
 89            pos=(0.6 + 0.085, 0.0, 0.3), rot=(0.9238795325, 0.0, -0.3826834324, 0.0)
 90        ),
 91    )
 92
 93    contact_forces = ContactSensorCfg(
 94        prim_path="/World/envs/env_.*/TiltedWall",
 95        update_period=0.0,
 96        history_length=2,
 97        debug_vis=False,
 98    )
 99
100    robot = FRANKA_PANDA_HIGH_PD_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot")
101    robot.actuators["panda_shoulder"].stiffness = 0.0
102    robot.actuators["panda_shoulder"].damping = 0.0
103    robot.actuators["panda_forearm"].stiffness = 0.0
104    robot.actuators["panda_forearm"].damping = 0.0
105    robot.spawn.rigid_props.disable_gravity = True
106
107
108def run_simulator(sim: sim_utils.SimulationContext, scene: InteractiveScene):
109    """Runs the simulation loop.
110
111    Args:
112        sim: (SimulationContext) Simulation context.
113        scene: (InteractiveScene) Interactive scene.
114    """
115
116    # Extract scene entities for readability.
117    robot = scene["robot"]
118    contact_forces = scene["contact_forces"]
119
120    # Obtain indices for the end-effector and arm joints
121    ee_frame_name = "panda_leftfinger"
122    arm_joint_names = ["panda_joint.*"]
123    ee_frame_idx = robot.find_bodies(ee_frame_name)[0][0]
124    arm_joint_ids = robot.find_joints(arm_joint_names)[0]
125
126    # Create the OSC
127    osc_cfg = OperationalSpaceControllerCfg(
128        target_types=["pose_abs", "wrench_abs"],
129        impedance_mode="variable_kp",
130        inertial_dynamics_decoupling=True,
131        partial_inertial_dynamics_decoupling=False,
132        gravity_compensation=False,
133        motion_damping_ratio_task=1.0,
134        contact_wrench_stiffness_task=[0.0, 0.0, 0.1, 0.0, 0.0, 0.0],
135        motion_control_axes_task=[1, 1, 0, 1, 1, 1],
136        contact_wrench_control_axes_task=[0, 0, 1, 0, 0, 0],
137    )
138    osc = OperationalSpaceController(osc_cfg, num_envs=scene.num_envs, device=sim.device)
139
140    # Markers
141    frame_marker_cfg = FRAME_MARKER_CFG.copy()
142    frame_marker_cfg.markers["frame"].scale = (0.1, 0.1, 0.1)
143    ee_marker = VisualizationMarkers(frame_marker_cfg.replace(prim_path="/Visuals/ee_current"))
144    goal_marker = VisualizationMarkers(frame_marker_cfg.replace(prim_path="/Visuals/ee_goal"))
145
146    # Define targets for the arm
147    ee_goal_pose_set_tilted_b = torch.tensor(
148        [
149            [0.6, 0.15, 0.3, 0.0, 0.92387953, 0.0, 0.38268343],
150            [0.6, -0.3, 0.3, 0.0, 0.92387953, 0.0, 0.38268343],
151            [0.8, 0.0, 0.5, 0.0, 0.92387953, 0.0, 0.38268343],
152        ],
153        device=sim.device,
154    )
155    ee_goal_wrench_set_tilted_task = torch.tensor(
156        [
157            [0.0, 0.0, 10.0, 0.0, 0.0, 0.0],
158            [0.0, 0.0, 10.0, 0.0, 0.0, 0.0],
159            [0.0, 0.0, 10.0, 0.0, 0.0, 0.0],
160        ],
161        device=sim.device,
162    )
163    kp_set_task = torch.tensor(
164        [
165            [360.0, 360.0, 360.0, 360.0, 360.0, 360.0],
166            [420.0, 420.0, 420.0, 420.0, 420.0, 420.0],
167            [320.0, 320.0, 320.0, 320.0, 320.0, 320.0],
168        ],
169        device=sim.device,
170    )
171    ee_target_set = torch.cat([ee_goal_pose_set_tilted_b, ee_goal_wrench_set_tilted_task, kp_set_task], dim=-1)
172
173    # Define simulation stepping
174    sim_dt = sim.get_physics_dt()
175
176    # Update existing buffers
177    # Note: We need to update buffers before the first step for the controller.
178    robot.update(dt=sim_dt)
179
180    # get the updated states
181    jacobian_b, mass_matrix, gravity, ee_pose_b, ee_vel_b, root_pose_w, ee_pose_w, ee_force_b = update_states(
182        sim, scene, robot, ee_frame_idx, arm_joint_ids, contact_forces
183    )
184
185    # Track the given target command
186    current_goal_idx = 0  # Current goal index for the arm
187    command = torch.zeros(
188        scene.num_envs, osc.action_dim, device=sim.device
189    )  # Generic target command, which can be pose, position, force, etc.
190    ee_target_pose_b = torch.zeros(scene.num_envs, 7, device=sim.device)  # Target pose in the body frame
191    ee_target_pose_w = torch.zeros(scene.num_envs, 7, device=sim.device)  # Target pose in the world frame (for marker)
192
193    # Set joint efforts to zero
194    zero_joint_efforts = torch.zeros(scene.num_envs, robot.num_joints, device=sim.device)
195    joint_efforts = torch.zeros(scene.num_envs, len(arm_joint_ids), device=sim.device)
196
197    count = 0
198    # Simulation loop
199    while simulation_app.is_running():
200        # reset every 500 steps
201        if count % 500 == 0:
202            # reset joint state to default
203            default_joint_pos = robot.data.default_joint_pos.clone()
204            default_joint_vel = robot.data.default_joint_vel.clone()
205            robot.write_joint_state_to_sim(default_joint_pos, default_joint_vel)
206            robot.set_joint_effort_target(zero_joint_efforts)  # Set zero torques in the initial step
207            robot.write_data_to_sim()
208            robot.reset()
209            # reset contact sensor
210            contact_forces.reset()
211            # reset target pose
212            robot.update(sim_dt)
213            _, _, _, ee_pose_b, _, _, _, _ = update_states(
214                sim, scene, robot, ee_frame_idx, arm_joint_ids, contact_forces
215            )  # at reset, the jacobians are not updated to the latest state
216            command, ee_target_pose_b, ee_target_pose_w, current_goal_idx = update_target(
217                sim, scene, osc, root_pose_w, ee_target_set, current_goal_idx
218            )
219            # set the osc command
220            osc.reset()
221            command, task_frame_pose_b = convert_to_task_frame(osc, command=command, ee_target_pose_b=ee_target_pose_b)
222            osc.set_command(command=command, current_ee_pose_b=ee_pose_b, current_task_frame_pose_b=task_frame_pose_b)
223        else:
224            # get the updated states
225            jacobian_b, mass_matrix, gravity, ee_pose_b, ee_vel_b, root_pose_w, ee_pose_w, ee_force_b = update_states(
226                sim, scene, robot, ee_frame_idx, arm_joint_ids, contact_forces
227            )
228            # compute the joint commands
229            joint_efforts = osc.compute(
230                jacobian_b=jacobian_b,
231                current_ee_pose_b=ee_pose_b,
232                current_ee_vel_b=ee_vel_b,
233                current_ee_force_b=ee_force_b,
234                mass_matrix=mass_matrix,
235                gravity=gravity,
236            )
237            # apply actions
238            robot.set_joint_effort_target(joint_efforts, joint_ids=arm_joint_ids)
239            robot.write_data_to_sim()
240
241        # update marker positions
242        ee_marker.visualize(ee_pose_w[:, 0:3], ee_pose_w[:, 3:7])
243        goal_marker.visualize(ee_target_pose_w[:, 0:3], ee_target_pose_w[:, 3:7])
244
245        # perform step
246        sim.step(render=True)
247        # update robot buffers
248        robot.update(sim_dt)
249        # update buffers
250        scene.update(sim_dt)
251        # update sim-time
252        count += 1
253
254
255# Update robot states
256def update_states(
257    sim: sim_utils.SimulationContext,
258    scene: InteractiveScene,
259    robot: Articulation,
260    ee_frame_idx: int,
261    arm_joint_ids: list[int],
262    contact_forces,
263):
264    """Update the robot states.
265
266    Args:
267        sim: (SimulationContext) Simulation context.
268        scene: (InteractiveScene) Interactive scene.
269        robot: (Articulation) Robot articulation.
270        ee_frame_idx: (int) End-effector frame index.
271        arm_joint_ids: (list[int]) Arm joint indices.
272        contact_forces: (ContactSensor) Contact sensor.
273
274    Returns:
275        jacobian_b (torch.tensor): Jacobian in the body frame.
276        mass_matrix (torch.tensor): Mass matrix.
277        gravity (torch.tensor): Gravity vector.
278        ee_pose_b (torch.tensor): End-effector pose in the body frame.
279        ee_vel_b (torch.tensor): End-effector velocity in the body frame.
280        root_pose_w (torch.tensor): Root pose in the world frame.
281        ee_pose_w (torch.tensor): End-effector pose in the world frame.
282        ee_force_b (torch.tensor): End-effector force in the body frame.
283
284    Raises:
285        ValueError: Undefined target_type.
286    """
287    # obtain dynamics related quantities from simulation
288    ee_jacobi_idx = ee_frame_idx - 1
289    jacobian_w = robot.root_physx_view.get_jacobians()[:, ee_jacobi_idx, :, arm_joint_ids]
290    mass_matrix = robot.root_physx_view.get_mass_matrices()[:, arm_joint_ids, :][:, :, arm_joint_ids]
291    gravity = robot.root_physx_view.get_generalized_gravity_forces()[:, arm_joint_ids]
292    # Convert the Jacobian from world to root frame
293    jacobian_b = jacobian_w.clone()
294    root_rot_matrix = matrix_from_quat(quat_inv(robot.data.root_state_w[:, 3:7]))
295    jacobian_b[:, :3, :] = torch.bmm(root_rot_matrix, jacobian_b[:, :3, :])
296    jacobian_b[:, 3:, :] = torch.bmm(root_rot_matrix, jacobian_b[:, 3:, :])
297
298    # Compute current pose of the end-effector
299    root_pose_w = robot.data.root_state_w[:, 0:7]
300    ee_pose_w = robot.data.body_state_w[:, ee_frame_idx, 0:7]
301    ee_pos_b, ee_quat_b = subtract_frame_transforms(
302        root_pose_w[:, 0:3], root_pose_w[:, 3:7], ee_pose_w[:, 0:3], ee_pose_w[:, 3:7]
303    )
304    ee_pose_b = torch.cat([ee_pos_b, ee_quat_b], dim=-1)
305
306    # Compute the current velocity of the end-effector
307    ee_vel_w = robot.data.body_vel_w[:, ee_frame_idx, :]  # Extract end-effector velocity in the world frame
308    root_vel_w = robot.data.root_vel_w  # Extract root velocity in the world frame
309    relative_vel_w = ee_vel_w - root_vel_w  # Compute the relative velocity in the world frame
310    ee_lin_vel_b = quat_rotate_inverse(robot.data.root_quat_w, relative_vel_w[:, 0:3])  # From world to root frame
311    ee_ang_vel_b = quat_rotate_inverse(robot.data.root_quat_w, relative_vel_w[:, 3:6])
312    ee_vel_b = torch.cat([ee_lin_vel_b, ee_ang_vel_b], dim=-1)
313
314    # Calculate the contact force
315    ee_force_w = torch.zeros(scene.num_envs, 3, device=sim.device)
316    sim_dt = sim.get_physics_dt()
317    contact_forces.update(sim_dt)  # update contact sensor
318    # Calculate the contact force by averaging over last four time steps (i.e., to smoothen) and
319    # taking the max of three surfaces as only one should be the contact of interest
320    ee_force_w, _ = torch.max(torch.mean(contact_forces.data.net_forces_w_history, dim=1), dim=1)
321
322    # This is a simplification, only for the sake of testing.
323    ee_force_b = ee_force_w
324
325    return jacobian_b, mass_matrix, gravity, ee_pose_b, ee_vel_b, root_pose_w, ee_pose_w, ee_force_b
326
327
328# Update the target commands
329def update_target(
330    sim: sim_utils.SimulationContext,
331    scene: InteractiveScene,
332    osc: OperationalSpaceController,
333    root_pose_w: torch.tensor,
334    ee_target_set: torch.tensor,
335    current_goal_idx: int,
336):
337    """Update the targets for the operational space controller.
338
339    Args:
340        sim: (SimulationContext) Simulation context.
341        scene: (InteractiveScene) Interactive scene.
342        osc: (OperationalSpaceController) Operational space controller.
343        root_pose_w: (torch.tensor) Root pose in the world frame.
344        ee_target_set: (torch.tensor) End-effector target set.
345        current_goal_idx: (int) Current goal index.
346
347    Returns:
348        command (torch.tensor): Updated target command.
349        ee_target_pose_b (torch.tensor): Updated target pose in the body frame.
350        ee_target_pose_w (torch.tensor): Updated target pose in the world frame.
351        next_goal_idx (int): Next goal index.
352
353    Raises:
354        ValueError: Undefined target_type.
355    """
356
357    # update the ee desired command
358    command = torch.zeros(scene.num_envs, osc.action_dim, device=sim.device)
359    command[:] = ee_target_set[current_goal_idx]
360
361    # update the ee desired pose
362    ee_target_pose_b = torch.zeros(scene.num_envs, 7, device=sim.device)
363    for target_type in osc.cfg.target_types:
364        if target_type == "pose_abs":
365            ee_target_pose_b[:] = command[:, :7]
366        elif target_type == "wrench_abs":
367            pass  # ee_target_pose_b could stay at the root frame for force control, what matters is ee_target_b
368        else:
369            raise ValueError("Undefined target_type within update_target().")
370
371    # update the target desired pose in world frame (for marker)
372    ee_target_pos_w, ee_target_quat_w = combine_frame_transforms(
373        root_pose_w[:, 0:3], root_pose_w[:, 3:7], ee_target_pose_b[:, 0:3], ee_target_pose_b[:, 3:7]
374    )
375    ee_target_pose_w = torch.cat([ee_target_pos_w, ee_target_quat_w], dim=-1)
376
377    next_goal_idx = (current_goal_idx + 1) % len(ee_target_set)
378
379    return command, ee_target_pose_b, ee_target_pose_w, next_goal_idx
380
381
382# Convert the target commands to the task frame
383def convert_to_task_frame(osc: OperationalSpaceController, command: torch.tensor, ee_target_pose_b: torch.tensor):
384    """Converts the target commands to the task frame.
385
386    Args:
387        osc: OperationalSpaceController object.
388        command: Command to be converted.
389        ee_target_pose_b: Target pose in the body frame.
390
391    Returns:
392        command (torch.tensor): Target command in the task frame.
393        task_frame_pose_b (torch.tensor): Target pose in the task frame.
394
395    Raises:
396        ValueError: Undefined target_type.
397    """
398    command = command.clone()
399    task_frame_pose_b = ee_target_pose_b.clone()
400
401    cmd_idx = 0
402    for target_type in osc.cfg.target_types:
403        if target_type == "pose_abs":
404            command[:, :3], command[:, 3:7] = subtract_frame_transforms(
405                task_frame_pose_b[:, :3], task_frame_pose_b[:, 3:], command[:, :3], command[:, 3:7]
406            )
407            cmd_idx += 7
408        elif target_type == "wrench_abs":
409            # These are already defined in target frame for ee_goal_wrench_set_tilted_task (since it is
410            # easier), so not transforming
411            cmd_idx += 6
412        else:
413            raise ValueError("Undefined target_type within _convert_to_task_frame().")
414
415    return command, task_frame_pose_b
416
417
418def main():
419    """Main function."""
420    # Load kit helper
421    sim_cfg = sim_utils.SimulationCfg(dt=0.01, device=args_cli.device)
422    sim = sim_utils.SimulationContext(sim_cfg)
423    # Set main camera
424    sim.set_camera_view([2.5, 2.5, 2.5], [0.0, 0.0, 0.0])
425    # Design scene
426    scene_cfg = SceneCfg(num_envs=args_cli.num_envs, env_spacing=2.0)
427    scene = InteractiveScene(scene_cfg)
428    # Play the simulator
429    sim.reset()
430    # Now we are ready!
431    print("[INFO]: Setup complete...")
432    # Run the simulator
433    run_simulator(sim, scene)
434
435
436if __name__ == "__main__":
437    # run the main function
438    main()
439    # close sim app
440    simulation_app.close()

创建一个操作空间控制器#

OperationalSpaceController 类计算机器人在任务空间中同时进行运动和力控制时的关节力/扭矩。

这个任务空间的参考坐标系可以是欧几里德空间中的任意坐标系。默认情况下,它是机器人的基坐标系。然而,在某些情况下,相对于其他坐标系定义目标坐标会更容易。在这种情况下,应该在 set_command 方法的 current_task_frame_pose_b 参数中提供该任务参考坐标系相对于机器人基坐标系的姿态。例如,在这个教程中,将目标命令相对于与墙面平行的坐标系定义是有意义的,因为这样力控制方向将仅在该坐标系的z轴上非零。设置为具有与墙面相同方向的目标姿态就是这样一个候选项,并在本教程中作为任务坐标系使用。因此,应该以这个任务参考坐标系为考虑来设置所有到 OperationalSpaceControllerCfg 的参数。

对于运动控制,任务空间目标可以被设定为绝对(即,相对于机器人基坐标系定义, target_types: "pose_abs") 或相对于末端执行器当前姿态(即,target_types: "pose_rel") 。对于力控制,任务空间目标可以被设定为绝对(即,相对于机器人基坐标系定义,target_types: "force_abs") 。如果希望同时应用姿态和力控制,target_types 应该是一个列表,如 ["pose_abs", "wrench_abs"]["pose_rel", "wrench_abs"]

运动和力控制将应用的轴可以使用 motion_control_axes_taskforce_control_axes_task 参数进行指定。这些列表应包含所有六个轴(位置和旋转)的0/1,并且彼此互补(例如,对于x轴,如果 motion_control_axes_task0 ,则 force_control_axes_task 应为 1 )。

对于运动控制轴,可以使用 motion_control_stiffnessmotion_damping_ratio_task 参数指定所需的刚度和阻尼比值,这可以是一个标量(所有轴的相同值)或一个包含六个标量的列表,每个值对应一个轴。如果需要,刚度和阻尼比值可以作为命令参数(例如,使用RL学习这些值或在运行时更改这些值)。为此, impedance_mode 应为 "variable_kp" 以在命令中包含刚度值,或者为 "variable" 以在命令中同时包含刚度和阻尼比值。在这些情况下,还应设置 motion_stiffness_limits_taskmotion_damping_limits_task ,这会限制刚度和阻尼比值的范围。

对于接触力控制,可以通过不设置 contact_wrench_stiffness_task 来应用开环力控制,或者通过设置所需刚度值来应用带有前馈项的闭环力控制,其使用 contact_wrench_stiffness_task 参数,该参数可以是一个标量或六个标量的列表。请注意,目前只有接触力矩的线性部分(因此是 contact_wrench_stiffness_task 的前三个元素)在闭环控制中被考虑,因为接触传感器无法测量旋转部分。

对于运动控制,应将 inertial_dynamics_decoupling 设置为 True ,以使用机器人的惯性矩阵来解耦任务空间中的期望加速度。这对于运动控制的精确性非常重要,特别是对于快速运动。这种惯性解耦考虑了所有六个运动轴之间的耦合。如果需要,可以通过将 partial_inertial_dynamics_decoupling 设置为 True 来忽略平移和旋转轴之间的惯性耦合。

如果希望在操作空间指令中包含重力补偿,则应将 gravity_compensation 设置为 True

包含的 OSC 实现以批处理格式进行计算,并使用 PyTorch 操作。

在本教程中,我们将使用 "pose_abs" 控制除 z 轴以外的所有轴的运动,使用 "wrench_abs" 控制 z 轴上的力。此外,我们将在运动控制中包括完整的惯性解耦,并且不包括重力补偿,因为机器人配置中禁用了重力。最后,我们将将阻抗模式设置为 "variable_kp" ,以动态更改刚度值( motion_damping_ratio_task 设置为 1 :kd 值会根据 kp 值自适应以保持过阻尼响应)。

    # Create the OSC
    osc_cfg = OperationalSpaceControllerCfg(
        target_types=["pose_abs", "wrench_abs"],
        impedance_mode="variable_kp",
        inertial_dynamics_decoupling=True,
        partial_inertial_dynamics_decoupling=False,
        gravity_compensation=False,
        motion_damping_ratio_task=1.0,
        contact_wrench_stiffness_task=[0.0, 0.0, 0.1, 0.0, 0.0, 0.0],
        motion_control_axes_task=[1, 1, 0, 1, 1, 1],
        contact_wrench_control_axes_task=[0, 0, 1, 0, 0, 0],
    )
    osc = OperationalSpaceController(osc_cfg, num_envs=scene.num_envs, device=sim.device)

更新机器人的状态#

OSC 实现是一个纯计算类。因此,它期望用户提供有关机器人的必要信息。这包括机器人的雅可比矩阵、质量/惯性矩阵、末端执行器姿态、速度和接触力,均在根帧中。此外,用户应提供重力补偿向量(如有需要)。

# Update robot states
def update_states(
    sim: sim_utils.SimulationContext,
    scene: InteractiveScene,
    robot: Articulation,
    ee_frame_idx: int,
    arm_joint_ids: list[int],
    contact_forces,
):
    """Update the robot states.

    Args:
        sim: (SimulationContext) Simulation context.
        scene: (InteractiveScene) Interactive scene.
        robot: (Articulation) Robot articulation.
        ee_frame_idx: (int) End-effector frame index.
        arm_joint_ids: (list[int]) Arm joint indices.
        contact_forces: (ContactSensor) Contact sensor.

    Returns:
        jacobian_b (torch.tensor): Jacobian in the body frame.
        mass_matrix (torch.tensor): Mass matrix.
        gravity (torch.tensor): Gravity vector.
        ee_pose_b (torch.tensor): End-effector pose in the body frame.
        ee_vel_b (torch.tensor): End-effector velocity in the body frame.
        root_pose_w (torch.tensor): Root pose in the world frame.
        ee_pose_w (torch.tensor): End-effector pose in the world frame.
        ee_force_b (torch.tensor): End-effector force in the body frame.

    Raises:
        ValueError: Undefined target_type.
    """
    # obtain dynamics related quantities from simulation
    ee_jacobi_idx = ee_frame_idx - 1
    jacobian_w = robot.root_physx_view.get_jacobians()[:, ee_jacobi_idx, :, arm_joint_ids]
    mass_matrix = robot.root_physx_view.get_mass_matrices()[:, arm_joint_ids, :][:, :, arm_joint_ids]
    gravity = robot.root_physx_view.get_generalized_gravity_forces()[:, arm_joint_ids]
    # Convert the Jacobian from world to root frame
    jacobian_b = jacobian_w.clone()
    root_rot_matrix = matrix_from_quat(quat_inv(robot.data.root_state_w[:, 3:7]))
    jacobian_b[:, :3, :] = torch.bmm(root_rot_matrix, jacobian_b[:, :3, :])
    jacobian_b[:, 3:, :] = torch.bmm(root_rot_matrix, jacobian_b[:, 3:, :])

    # Compute current pose of the end-effector
    root_pose_w = robot.data.root_state_w[:, 0:7]
    ee_pose_w = robot.data.body_state_w[:, ee_frame_idx, 0:7]
    ee_pos_b, ee_quat_b = subtract_frame_transforms(
        root_pose_w[:, 0:3], root_pose_w[:, 3:7], ee_pose_w[:, 0:3], ee_pose_w[:, 3:7]
    )
    ee_pose_b = torch.cat([ee_pos_b, ee_quat_b], dim=-1)

    # Compute the current velocity of the end-effector
    ee_vel_w = robot.data.body_vel_w[:, ee_frame_idx, :]  # Extract end-effector velocity in the world frame
    root_vel_w = robot.data.root_vel_w  # Extract root velocity in the world frame
    relative_vel_w = ee_vel_w - root_vel_w  # Compute the relative velocity in the world frame
    ee_lin_vel_b = quat_rotate_inverse(robot.data.root_quat_w, relative_vel_w[:, 0:3])  # From world to root frame
    ee_ang_vel_b = quat_rotate_inverse(robot.data.root_quat_w, relative_vel_w[:, 3:6])
    ee_vel_b = torch.cat([ee_lin_vel_b, ee_ang_vel_b], dim=-1)

    # Calculate the contact force
    ee_force_w = torch.zeros(scene.num_envs, 3, device=sim.device)
    sim_dt = sim.get_physics_dt()
    contact_forces.update(sim_dt)  # update contact sensor
    # Calculate the contact force by averaging over last four time steps (i.e., to smoothen) and
    # taking the max of three surfaces as only one should be the contact of interest
    ee_force_w, _ = torch.max(torch.mean(contact_forces.data.net_forces_w_history, dim=1), dim=1)

    # This is a simplification, only for the sake of testing.
    ee_force_b = ee_force_w

计算机器人命令#

OSC 分离了设定期望命令和计算期望关节位置的操作。要设定期望命令,用户应提供命令向量,其中包括目标命令(即在 OSC 配置的 target_types 参数中出现的顺序)以及如果 impedance_mode 设置为 "variable_kp""variable" 时的期望刚度和阻尼比值。它们应该都在与任务框架相同的坐标系中(例如,用 _task 下标表示)并连接在一起。

在本教程中,期望的力矩已经相对于任务框架进行了定义,并且期望的姿势被转换到任务框架中,如下所示:

# Convert the target commands to the task frame
def convert_to_task_frame(osc: OperationalSpaceController, command: torch.tensor, ee_target_pose_b: torch.tensor):
    """Converts the target commands to the task frame.

    Args:
        osc: OperationalSpaceController object.
        command: Command to be converted.
        ee_target_pose_b: Target pose in the body frame.

    Returns:
        command (torch.tensor): Target command in the task frame.
        task_frame_pose_b (torch.tensor): Target pose in the task frame.

    Raises:
        ValueError: Undefined target_type.
    """
    command = command.clone()
    task_frame_pose_b = ee_target_pose_b.clone()

    cmd_idx = 0
    for target_type in osc.cfg.target_types:
        if target_type == "pose_abs":
            command[:, :3], command[:, 3:7] = subtract_frame_transforms(
                task_frame_pose_b[:, :3], task_frame_pose_b[:, 3:], command[:, :3], command[:, 3:7]
            )
            cmd_idx += 7
        elif target_type == "wrench_abs":
            # These are already defined in target frame for ee_goal_wrench_set_tilted_task (since it is
            # easier), so not transforming
            cmd_idx += 6
        else:
            raise ValueError("Undefined target_type within _convert_to_task_frame().")

    return command, task_frame_pose_b

OSC 命令是使用任务坐标系中的命令向量设置的,基坐标系中的末端执行器姿势和基坐标系中的任务(参考)坐标系姿势如下。这些信息是必要的,因为内部计算是在基坐标系中完成的。

            # set the osc command
            osc.reset()
            command, task_frame_pose_b = convert_to_task_frame(osc, command=command, ee_target_pose_b=ee_target_pose_b)
            osc.set_command(command=command, current_ee_pose_b=ee_pose_b, current_task_frame_pose_b=task_frame_pose_b)

使用提供的机器人状态和所需命令计算关节力/扭矩值,如下所示:

            # compute the joint commands
            joint_efforts = osc.compute(
                jacobian_b=jacobian_b,
                current_ee_pose_b=ee_pose_b,
                current_ee_vel_b=ee_vel_b,
                current_ee_force_b=ee_force_b,
                mass_matrix=mass_matrix,
                gravity=gravity,
            )

计算得出的关节努力/力矩目标随后可以应用于机器人中。

            # apply actions
            robot.set_joint_effort_target(joint_efforts, joint_ids=arm_joint_ids)
            robot.write_data_to_sim()

代码执行#

你现在可以运行脚本并查看结果:

./isaaclab.sh -p source/standalone/tutorials/05_controllers/run_osc.py --num_envs 128

该脚本将启动一个包含128个机器人的仿真。将使用OSC进行机器人的控制。当前和期望的末端执行器姿势应该使用框架标记显示,除了红色倾斜墙之外。您应该看到机器人在施加垂直于墙面的恒定力的同时到达期望姿势。

run_osc.py 的结果

要停止模拟,您可以关闭窗口或在终端中按 Ctrl+C