光线投射

光线投射#

A diagram outlining the basic geometry of frame transformations

Ray Caster传感器(以及ray caster相机)与基于RTX的渲染类似,二者都涉及到射线投射。不同之处在于,Ray Caster传感器投射的射线严格返回沿投射路径的碰撞信息,并且每条射线的方向可以被指定。它们不会反弹,也不受材质或不透明度等因素的影响。对于传感器指定的每条射线,会沿射线路径追踪一条线,并返回与指定网格的第一次碰撞位置。这是我们的一些四足动物示例中用于测量局部高度场的方法。

为了保持传感器在有多个克隆环境时的性能,线条追踪直接在 Warp 中完成。这就是为什么需要识别特定网格以进行碰撞的原因:当传感器初始化时,warp 会将这些网格数据加载到设备上。因此,当前版本的传感器仅适用于字面上的静态网格(即 那些没有从其 USD 文件中指定的默认值发生变化的 网格)。这个限制将在未来的版本中移除。

使用光线投射传感器需要附加一个 模式 和一个父级 xform。模式定义了光线如何投射,而 prim 属性定义了传感器的方向和位置(可以指定额外的偏移量以实现更精确的放置)。Isaac Lab 支持多种光线投射模式配置,包括通用的 LIDAR 和网格模式。

@configclass
class RaycasterSensorSceneCfg(InteractiveSceneCfg):
    """Design the scene with sensors on the robot."""

    # ground plane with texture for interesting casting results
    ground = AssetBaseCfg(
        prim_path="/World/Ground",
        spawn=sim_utils.UsdFileCfg(
            usd_path=f"{ISAAC_NUCLEUS_DIR}/Environments/Terrains/rough_plane.usd",
            scale = (1,1,1),
        )
    )

    # lights
    dome_light = AssetBaseCfg(
        prim_path="/World/Light", spawn=sim_utils.DomeLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75))
    )

    # robot
    robot = ANYMAL_C_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot")

    ray_caster = RayCasterCfg(
        prim_path="{ENV_REGEX_NS}/Robot/base/lidar_cage",
        update_period = 1/60,
        offset=RayCasterCfg.OffsetCfg(pos=(0,0,0.5)),
        mesh_prim_paths=["/World/Ground"],
        attach_yaw_only=True,
        pattern_cfg=patterns.LidarPatternCfg(
          channels = 100,
          vertical_fov_range=[-90, 90],
          horizontal_fov_range = [-90,90],
          horizontal_res=1.0),
        debug_vis=True,
    )

注意,模式配置上的单位是以度为单位!另外,我们在这里启用了可视化功能,以便在渲染中明确显示模式,但这不是必需的,并且在性能调优时应该禁用。

Lidar Pattern visualized

查询传感器的数据可以像其他传感器一样在仿真运行时进行。

def run_simulator(sim: sim_utils.SimulationContext, scene: InteractiveScene):
  .
  .
  .
  # Simulate physics
  while simulation_app.is_running():
    .
    .
    .
    # print information from the sensors
      print("-------------------------------")
      print(scene["ray_caster"])
      print("Ray cast hit results: ", scene["ray_caster"].data.ray_hits_w)
-------------------------------
Ray-caster @ '/World/envs/env_.*/Robot/base/lidar_cage':
        view type            : <class 'omni.isaac.core.prims.xform_prim_view.XFormPrimView'>
        update period (s)    : 0.016666666666666666
        number of meshes     : 1
        number of sensors    : 1
        number of rays/sensor: 18000
        total number of rays : 18000
Ray cast hit results:  tensor([[[-0.3698,  0.0357,  0.0000],
        [-0.3698,  0.0357,  0.0000],
        [-0.3698,  0.0357,  0.0000],
        ...,
        [    inf,     inf,     inf],
        [    inf,     inf,     inf],
        [    inf,     inf,     inf]]], device='cuda:0')
-------------------------------

在这里,我们可以看到传感器本身返回的数据。首先请注意,开始和结束处有 3 个闭括号:这是因为返回的数据是按传感器的数量进行分批的。射线投射模式本身也已经被压平,因此数组的维度是 [N, B, 3],其中 N 是传感器的数量,B 是模式中投射的射线数量,3 是投射空间的维度。最后,请注意,这个投射模式中的前几个值是相同的:这是因为 lidar 模式是球形的,我们已将视场(FOV)指定为半球形,这包括了极点。在这种配置下, “压平模式” 变得显而易见:前 180 个条目将是相同的,因为它是该半球的底极,并且会有 180 个条目,因为我们的水平视场是 180 度,分辨率为 1 度。

您可以使用此脚本来实验不同的模式配置,并通过修改第 99 行的 triggered 变量来建立对数据存储方式的直觉。

raycaster_sensor.py 的代码
  1# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
  2# All rights reserved.
  3#
  4# SPDX-License-Identifier: BSD-3-Clause
  5
  6import argparse
  7import numpy as np
  8
  9from omni.isaac.lab.app import AppLauncher
 10
 11# add argparse arguments
 12parser = argparse.ArgumentParser(description="Tutorial on adding sensors on a robot.")
 13parser.add_argument("--num_envs", type=int, default=1, help="Number of environments to spawn.")
 14# append AppLauncher cli args
 15AppLauncher.add_app_launcher_args(parser)
 16# parse the arguments
 17args_cli = parser.parse_args()
 18
 19# launch omniverse app
 20app_launcher = AppLauncher(args_cli)
 21simulation_app = app_launcher.app
 22
 23"""Rest everything follows."""
 24
 25import torch
 26
 27import omni.isaac.lab.sim as sim_utils
 28from omni.isaac.lab.assets import AssetBaseCfg
 29from omni.isaac.lab.scene import InteractiveScene, InteractiveSceneCfg
 30from omni.isaac.lab.sensors.ray_caster import RayCasterCfg, patterns
 31from omni.isaac.lab.utils import configclass
 32from omni.isaac.lab.utils.assets import ISAAC_NUCLEUS_DIR
 33
 34##
 35# Pre-defined configs
 36##
 37from omni.isaac.lab_assets.anymal import ANYMAL_C_CFG  # isort: skip
 38
 39
 40@configclass
 41class RaycasterSensorSceneCfg(InteractiveSceneCfg):
 42    """Design the scene with sensors on the robot."""
 43
 44    # ground plane
 45    ground = AssetBaseCfg(
 46        prim_path="/World/Ground",
 47        spawn=sim_utils.UsdFileCfg(
 48            usd_path=f"{ISAAC_NUCLEUS_DIR}/Environments/Terrains/rough_plane.usd",
 49            scale=(1, 1, 1),
 50        ),
 51    )
 52
 53    # lights
 54    dome_light = AssetBaseCfg(
 55        prim_path="/World/Light", spawn=sim_utils.DomeLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75))
 56    )
 57
 58    # robot
 59    robot = ANYMAL_C_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot")
 60
 61    ray_caster = RayCasterCfg(
 62        prim_path="{ENV_REGEX_NS}/Robot/base/lidar_cage",
 63        update_period=1 / 60,
 64        offset=RayCasterCfg.OffsetCfg(pos=(0, 0, 0.5)),
 65        mesh_prim_paths=["/World/Ground"],
 66        attach_yaw_only=True,
 67        pattern_cfg=patterns.LidarPatternCfg(
 68            channels=100, vertical_fov_range=[-90, 90], horizontal_fov_range=[-90, 90], horizontal_res=1.0
 69        ),
 70        debug_vis=not args_cli.headless,
 71    )
 72
 73
 74def run_simulator(sim: sim_utils.SimulationContext, scene: InteractiveScene):
 75    """Run the simulator."""
 76    # Define simulation stepping
 77    sim_dt = sim.get_physics_dt()
 78    sim_time = 0.0
 79    count = 0
 80
 81    triggered = True
 82    countdown = 42
 83
 84    # Simulate physics
 85    while simulation_app.is_running():
 86
 87        if count % 500 == 0:
 88            # reset counter
 89            count = 0
 90            # reset the scene entities
 91            # root state
 92            # we offset the root state by the origin since the states are written in simulation world frame
 93            # if this is not done, then the robots will be spawned at the (0, 0, 0) of the simulation world
 94            root_state = scene["robot"].data.default_root_state.clone()
 95            root_state[:, :3] += scene.env_origins
 96            scene["robot"].write_root_link_pose_to_sim(root_state[:, :7])
 97            scene["robot"].write_root_com_velocity_to_sim(root_state[:, 7:])
 98            # set joint positions with some noise
 99            joint_pos, joint_vel = (
100                scene["robot"].data.default_joint_pos.clone(),
101                scene["robot"].data.default_joint_vel.clone(),
102            )
103            joint_pos += torch.rand_like(joint_pos) * 0.1
104            scene["robot"].write_joint_state_to_sim(joint_pos, joint_vel)
105            # clear internal buffers
106            scene.reset()
107            print("[INFO]: Resetting robot state...")
108        # Apply default actions to the robot
109        # -- generate actions/commands
110        targets = scene["robot"].data.default_joint_pos
111        # -- apply action to the robot
112        scene["robot"].set_joint_position_target(targets)
113        # -- write data to sim
114        scene.write_data_to_sim()
115        # perform step
116        sim.step()
117        # update sim-time
118        sim_time += sim_dt
119        count += 1
120        # update buffers
121        scene.update(sim_dt)
122
123        # print information from the sensors
124        print("-------------------------------")
125        print(scene["ray_caster"])
126        print("Ray cast hit results: ", scene["ray_caster"].data.ray_hits_w)
127
128        if not triggered:
129            if countdown > 0:
130                countdown -= 1
131                continue
132            data = scene["ray_caster"].data.ray_hits_w.cpu().numpy()
133            np.save("cast_data.npy", data)
134            triggered = True
135        else:
136            continue
137
138
139def main():
140    """Main function."""
141
142    # Initialize the simulation context
143    sim_cfg = sim_utils.SimulationCfg(dt=0.005, device=args_cli.device)
144    sim = sim_utils.SimulationContext(sim_cfg)
145    # Set main camera
146    sim.set_camera_view(eye=[3.5, 3.5, 3.5], target=[0.0, 0.0, 0.0])
147    # design scene
148    scene_cfg = RaycasterSensorSceneCfg(num_envs=args_cli.num_envs, env_spacing=2.0)
149    scene = InteractiveScene(scene_cfg)
150    # Play the simulator
151    sim.reset()
152    # Now we are ready!
153    print("[INFO]: Setup complete...")
154    # Run the simulator
155    run_simulator(sim, scene)
156
157
158if __name__ == "__main__":
159    # run the main function
160    main()
161    # close sim app
162    simulation_app.close()