omni.isaac.lab_tasks.utils.wrappers.rsl_rl.vecenv_wrapper 源代码

# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause

"""Wrapper to configure a :class:`ManagerBasedRLEnv` or :class:`DirectRlEnv` instance to RSL-RL vectorized environment.

The following example shows how to wrap an environment for RSL-RL:

.. code-block:: python

    from omni.isaac.lab_tasks.utils.wrappers.rsl_rl import RslRlVecEnvWrapper

    env = RslRlVecEnvWrapper(env)

"""


import gymnasium as gym
import torch

from rsl_rl.env import VecEnv

from omni.isaac.lab.envs import DirectRLEnv, ManagerBasedRLEnv


[文档]class RslRlVecEnvWrapper(VecEnv): """Wraps around Isaac Lab environment for RSL-RL library To use asymmetric actor-critic, the environment instance must have the attributes :attr:`num_privileged_obs` (int). This is used by the learning agent to allocate buffers in the trajectory memory. Additionally, the returned observations should have the key "critic" which corresponds to the privileged observations. Since this is optional for some environments, the wrapper checks if these attributes exist. If they don't then the wrapper defaults to zero as number of privileged observations. .. caution:: This class must be the last wrapper in the wrapper chain. This is because the wrapper does not follow the :class:`gym.Wrapper` interface. Any subsequent wrappers will need to be modified to work with this wrapper. Reference: https://github.com/leggedrobotics/rsl_rl/blob/master/rsl_rl/env/vec_env.py """
[文档] def __init__(self, env: ManagerBasedRLEnv | DirectRLEnv): """Initializes the wrapper. Note: The wrapper calls :meth:`reset` at the start since the RSL-RL runner does not call reset. Args: env: The environment to wrap around. Raises: ValueError: When the environment is not an instance of :class:`ManagerBasedRLEnv` or :class:`DirectRLEnv`. """ # check that input is valid if not isinstance(env.unwrapped, ManagerBasedRLEnv) and not isinstance(env.unwrapped, DirectRLEnv): raise ValueError( "The environment must be inherited from ManagerBasedRLEnv or DirectRLEnv. Environment type:" f" {type(env)}" ) # initialize the wrapper self.env = env # store information required by wrapper self.num_envs = self.unwrapped.num_envs self.device = self.unwrapped.device self.max_episode_length = self.unwrapped.max_episode_length if hasattr(self.unwrapped, "action_manager"): self.num_actions = self.unwrapped.action_manager.total_action_dim else: self.num_actions = gym.spaces.flatdim(self.unwrapped.single_action_space) if hasattr(self.unwrapped, "observation_manager"): self.num_obs = self.unwrapped.observation_manager.group_obs_dim["policy"][0] else: self.num_obs = gym.spaces.flatdim(self.unwrapped.single_observation_space["policy"]) # -- privileged observations if ( hasattr(self.unwrapped, "observation_manager") and "critic" in self.unwrapped.observation_manager.group_obs_dim ): self.num_privileged_obs = self.unwrapped.observation_manager.group_obs_dim["critic"][0] elif hasattr(self.unwrapped, "num_states") and "critic" in self.unwrapped.single_observation_space: self.num_privileged_obs = gym.spaces.flatdim(self.unwrapped.single_observation_space["critic"]) else: self.num_privileged_obs = 0 # reset at the start since the RSL-RL runner does not call reset self.env.reset()
def __str__(self): """Returns the wrapper name and the :attr:`env` representation string.""" return f"<{type(self).__name__}{self.env}>" def __repr__(self): """Returns the string representation of the wrapper.""" return str(self) """ Properties -- Gym.Wrapper """ @property def cfg(self) -> object: """Returns the configuration class instance of the environment.""" return self.unwrapped.cfg @property def render_mode(self) -> str | None: """Returns the :attr:`Env` :attr:`render_mode`.""" return self.env.render_mode @property def observation_space(self) -> gym.Space: """Returns the :attr:`Env` :attr:`observation_space`.""" return self.env.observation_space @property def action_space(self) -> gym.Space: """Returns the :attr:`Env` :attr:`action_space`.""" return self.env.action_space
[文档] @classmethod def class_name(cls) -> str: """Returns the class name of the wrapper.""" return cls.__name__
@property def unwrapped(self) -> ManagerBasedRLEnv | DirectRLEnv: """Returns the base environment of the wrapper. This will be the bare :class:`gymnasium.Env` environment, underneath all layers of wrappers. """ return self.env.unwrapped """ Properties """
[文档] def get_observations(self) -> tuple[torch.Tensor, dict]: """Returns the current observations of the environment.""" if hasattr(self.unwrapped, "observation_manager"): obs_dict = self.unwrapped.observation_manager.compute() else: obs_dict = self.unwrapped._get_observations() return obs_dict["policy"], {"observations": obs_dict}
@property def episode_length_buf(self) -> torch.Tensor: """The episode length buffer.""" return self.unwrapped.episode_length_buf @episode_length_buf.setter def episode_length_buf(self, value: torch.Tensor): """Set the episode length buffer. Note: This is needed to perform random initialization of episode lengths in RSL-RL. """ self.unwrapped.episode_length_buf = value """ Operations - MDP """ def seed(self, seed: int = -1) -> int: # noqa: D102 return self.unwrapped.seed(seed) def reset(self) -> tuple[torch.Tensor, dict]: # noqa: D102 # reset the environment obs_dict, _ = self.env.reset() # return observations return obs_dict["policy"], {"observations": obs_dict} def step(self, actions: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, dict]: # record step information obs_dict, rew, terminated, truncated, extras = self.env.step(actions) # compute dones for compatibility with RSL-RL dones = (terminated | truncated).to(dtype=torch.long) # move extra observations to the extras dict obs = obs_dict["policy"] extras["observations"] = obs_dict # move time out information to the extras dict # this is only needed for infinite horizon tasks if not self.unwrapped.cfg.is_finite_horizon: extras["time_outs"] = truncated # return the step information return obs, rew, dones, extras def close(self): # noqa: D102 return self.env.close()