omni.isaac.lab_tasks.utils.wrappers.rsl_rl.vecenv_wrapper 源代码
# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
"""Wrapper to configure a :class:`ManagerBasedRLEnv` or :class:`DirectRlEnv` instance to RSL-RL vectorized environment.
The following example shows how to wrap an environment for RSL-RL:
.. code-block:: python
from omni.isaac.lab_tasks.utils.wrappers.rsl_rl import RslRlVecEnvWrapper
env = RslRlVecEnvWrapper(env)
"""
import gymnasium as gym
import torch
from rsl_rl.env import VecEnv
from omni.isaac.lab.envs import DirectRLEnv, ManagerBasedRLEnv
[文档]class RslRlVecEnvWrapper(VecEnv):
"""Wraps around Isaac Lab environment for RSL-RL library
To use asymmetric actor-critic, the environment instance must have the attributes :attr:`num_privileged_obs` (int).
This is used by the learning agent to allocate buffers in the trajectory memory. Additionally, the returned
observations should have the key "critic" which corresponds to the privileged observations. Since this is
optional for some environments, the wrapper checks if these attributes exist. If they don't then the wrapper
defaults to zero as number of privileged observations.
.. caution::
This class must be the last wrapper in the wrapper chain. This is because the wrapper does not follow
the :class:`gym.Wrapper` interface. Any subsequent wrappers will need to be modified to work with this
wrapper.
Reference:
https://github.com/leggedrobotics/rsl_rl/blob/master/rsl_rl/env/vec_env.py
"""
[文档] def __init__(self, env: ManagerBasedRLEnv | DirectRLEnv):
"""Initializes the wrapper.
Note:
The wrapper calls :meth:`reset` at the start since the RSL-RL runner does not call reset.
Args:
env: The environment to wrap around.
Raises:
ValueError: When the environment is not an instance of :class:`ManagerBasedRLEnv` or :class:`DirectRLEnv`.
"""
# check that input is valid
if not isinstance(env.unwrapped, ManagerBasedRLEnv) and not isinstance(env.unwrapped, DirectRLEnv):
raise ValueError(
"The environment must be inherited from ManagerBasedRLEnv or DirectRLEnv. Environment type:"
f" {type(env)}"
)
# initialize the wrapper
self.env = env
# store information required by wrapper
self.num_envs = self.unwrapped.num_envs
self.device = self.unwrapped.device
self.max_episode_length = self.unwrapped.max_episode_length
if hasattr(self.unwrapped, "action_manager"):
self.num_actions = self.unwrapped.action_manager.total_action_dim
else:
self.num_actions = gym.spaces.flatdim(self.unwrapped.single_action_space)
if hasattr(self.unwrapped, "observation_manager"):
self.num_obs = self.unwrapped.observation_manager.group_obs_dim["policy"][0]
else:
self.num_obs = gym.spaces.flatdim(self.unwrapped.single_observation_space["policy"])
# -- privileged observations
if (
hasattr(self.unwrapped, "observation_manager")
and "critic" in self.unwrapped.observation_manager.group_obs_dim
):
self.num_privileged_obs = self.unwrapped.observation_manager.group_obs_dim["critic"][0]
elif hasattr(self.unwrapped, "num_states") and "critic" in self.unwrapped.single_observation_space:
self.num_privileged_obs = gym.spaces.flatdim(self.unwrapped.single_observation_space["critic"])
else:
self.num_privileged_obs = 0
# reset at the start since the RSL-RL runner does not call reset
self.env.reset()
def __str__(self):
"""Returns the wrapper name and the :attr:`env` representation string."""
return f"<{type(self).__name__}{self.env}>"
def __repr__(self):
"""Returns the string representation of the wrapper."""
return str(self)
"""
Properties -- Gym.Wrapper
"""
@property
def cfg(self) -> object:
"""Returns the configuration class instance of the environment."""
return self.unwrapped.cfg
@property
def render_mode(self) -> str | None:
"""Returns the :attr:`Env` :attr:`render_mode`."""
return self.env.render_mode
@property
def observation_space(self) -> gym.Space:
"""Returns the :attr:`Env` :attr:`observation_space`."""
return self.env.observation_space
@property
def action_space(self) -> gym.Space:
"""Returns the :attr:`Env` :attr:`action_space`."""
return self.env.action_space
[文档] @classmethod
def class_name(cls) -> str:
"""Returns the class name of the wrapper."""
return cls.__name__
@property
def unwrapped(self) -> ManagerBasedRLEnv | DirectRLEnv:
"""Returns the base environment of the wrapper.
This will be the bare :class:`gymnasium.Env` environment, underneath all layers of wrappers.
"""
return self.env.unwrapped
"""
Properties
"""
[文档] def get_observations(self) -> tuple[torch.Tensor, dict]:
"""Returns the current observations of the environment."""
if hasattr(self.unwrapped, "observation_manager"):
obs_dict = self.unwrapped.observation_manager.compute()
else:
obs_dict = self.unwrapped._get_observations()
return obs_dict["policy"], {"observations": obs_dict}
@property
def episode_length_buf(self) -> torch.Tensor:
"""The episode length buffer."""
return self.unwrapped.episode_length_buf
@episode_length_buf.setter
def episode_length_buf(self, value: torch.Tensor):
"""Set the episode length buffer.
Note:
This is needed to perform random initialization of episode lengths in RSL-RL.
"""
self.unwrapped.episode_length_buf = value
"""
Operations - MDP
"""
def seed(self, seed: int = -1) -> int: # noqa: D102
return self.unwrapped.seed(seed)
def reset(self) -> tuple[torch.Tensor, dict]: # noqa: D102
# reset the environment
obs_dict, _ = self.env.reset()
# return observations
return obs_dict["policy"], {"observations": obs_dict}
def step(self, actions: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, dict]:
# record step information
obs_dict, rew, terminated, truncated, extras = self.env.step(actions)
# compute dones for compatibility with RSL-RL
dones = (terminated | truncated).to(dtype=torch.long)
# move extra observations to the extras dict
obs = obs_dict["policy"]
extras["observations"] = obs_dict
# move time out information to the extras dict
# this is only needed for infinite horizon tasks
if not self.unwrapped.cfg.is_finite_horizon:
extras["time_outs"] = truncated
# return the step information
return obs, rew, dones, extras
def close(self): # noqa: D102
return self.env.close()