# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
"""Wrapping around warp kernels for compatibility with torch tensors."""
# needed to import for allowing type-hinting: torch.Tensor | None
from __future__ import annotations
import numpy as np
import torch
import warp as wp
# disable warp module initialization messages
wp.config.quiet = True
# initialize the warp module
wp.init()
from . import kernels
[文档]def raycast_mesh(
ray_starts: torch.Tensor,
ray_directions: torch.Tensor,
mesh: wp.Mesh,
max_dist: float = 1e6,
return_distance: bool = False,
return_normal: bool = False,
return_face_id: bool = False,
) -> tuple[torch.Tensor, torch.Tensor | None, torch.Tensor | None, torch.Tensor | None]:
"""Performs ray-casting against a mesh.
Note that the `ray_starts` and `ray_directions`, and `ray_hits` should have compatible shapes
and data types to ensure proper execution. Additionally, they all must be in the same frame.
Args:
ray_starts: The starting position of the rays. Shape (N, 3).
ray_directions: The ray directions for each ray. Shape (N, 3).
mesh: The warp mesh to ray-cast against.
max_dist: The maximum distance to ray-cast. Defaults to 1e6.
return_distance: Whether to return the distance of the ray until it hits the mesh. Defaults to False.
return_normal: Whether to return the normal of the mesh face the ray hits. Defaults to False.
return_face_id: Whether to return the face id of the mesh face the ray hits. Defaults to False.
Returns:
The ray hit position. Shape (N, 3).
The returned tensor contains :obj:`float('inf')` for missed hits.
The ray hit distance. Shape (N,).
Will only return if :attr:`return_distance` is True, else returns None.
The returned tensor contains :obj:`float('inf')` for missed hits.
The ray hit normal. Shape (N, 3).
Will only return if :attr:`return_normal` is True else returns None.
The returned tensor contains :obj:`float('inf')` for missed hits.
The ray hit face id. Shape (N,).
Will only return if :attr:`return_face_id` is True else returns None.
The returned tensor contains :obj:`int(-1)` for missed hits.
"""
# extract device and shape information
shape = ray_starts.shape
device = ray_starts.device
# device of the mesh
torch_device = wp.device_to_torch(mesh.device)
# reshape the tensors
ray_starts = ray_starts.to(torch_device).view(-1, 3).contiguous()
ray_directions = ray_directions.to(torch_device).view(-1, 3).contiguous()
num_rays = ray_starts.shape[0]
# create output tensor for the ray hits
ray_hits = torch.full((num_rays, 3), float("inf"), device=torch_device).contiguous()
# map the memory to warp arrays
ray_starts_wp = wp.from_torch(ray_starts, dtype=wp.vec3)
ray_directions_wp = wp.from_torch(ray_directions, dtype=wp.vec3)
ray_hits_wp = wp.from_torch(ray_hits, dtype=wp.vec3)
if return_distance:
ray_distance = torch.full((num_rays,), float("inf"), device=torch_device).contiguous()
ray_distance_wp = wp.from_torch(ray_distance, dtype=wp.float32)
else:
ray_distance = None
ray_distance_wp = wp.empty((1,), dtype=wp.float32, device=torch_device)
if return_normal:
ray_normal = torch.full((num_rays, 3), float("inf"), device=torch_device).contiguous()
ray_normal_wp = wp.from_torch(ray_normal, dtype=wp.vec3)
else:
ray_normal = None
ray_normal_wp = wp.empty((1,), dtype=wp.vec3, device=torch_device)
if return_face_id:
ray_face_id = torch.ones((num_rays,), dtype=torch.int32, device=torch_device).contiguous() * (-1)
ray_face_id_wp = wp.from_torch(ray_face_id, dtype=wp.int32)
else:
ray_face_id = None
ray_face_id_wp = wp.empty((1,), dtype=wp.int32, device=torch_device)
# launch the warp kernel
wp.launch(
kernel=kernels.raycast_mesh_kernel,
dim=num_rays,
inputs=[
mesh.id,
ray_starts_wp,
ray_directions_wp,
ray_hits_wp,
ray_distance_wp,
ray_normal_wp,
ray_face_id_wp,
float(max_dist),
int(return_distance),
int(return_normal),
int(return_face_id),
],
device=mesh.device,
)
# NOTE: Synchronize is not needed anymore, but we keep it for now. Check with @dhoeller.
wp.synchronize()
if return_distance:
ray_distance = ray_distance.to(device).view(shape[0], shape[1])
if return_normal:
ray_normal = ray_normal.to(device).view(shape)
if return_face_id:
ray_face_id = ray_face_id.to(device).view(shape[0], shape[1])
return ray_hits.to(device).view(shape), ray_distance, ray_normal, ray_face_id
[文档]def convert_to_warp_mesh(points: np.ndarray, indices: np.ndarray, device: str) -> wp.Mesh:
"""Create a warp mesh object with a mesh defined from vertices and triangles.
Args:
points: The vertices of the mesh. Shape is (N, 3), where N is the number of vertices.
indices: The triangles of the mesh as references to vertices for each triangle.
Shape is (M, 3), where M is the number of triangles / faces.
device: The device to use for the mesh.
Returns:
The warp mesh object.
"""
return wp.Mesh(
points=wp.array(points.astype(np.float32), dtype=wp.vec3, device=device),
indices=wp.array(indices.astype(np.int32).flatten(), dtype=wp.int32, device=device),
)