omni.isaac.lab.utils.modifiers.modifier_base 源代码

# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause

from __future__ import annotations

import torch
from abc import ABC, abstractmethod
from collections.abc import Sequence
from typing import TYPE_CHECKING

if TYPE_CHECKING:
    from .modifier_cfg import ModifierCfg


[文档]class ModifierBase(ABC): """Base class for modifiers implemented as classes. Modifiers implementations can be functions or classes. If a modifier is a class, it should inherit from this class and implement the required methods. A class implementation of a modifier can be used to store state information between calls. This is useful for modifiers that require stateful operations, such as rolling averages or delays or decaying filters. Example pseudo-code to create and use the class: .. code-block:: python from omni.isaac.lab.utils import modifiers # define custom keyword arguments to pass to ModifierCfg kwarg_dict = {"arg_1" : VAL_1, "arg_2" : VAL_2} # create modifier configuration object # func is the class name of the modifier and params is the dictionary of arguments modifier_config = modifiers.ModifierCfg(func=modifiers.ModifierBase, params=kwarg_dict) # define modifier instance my_modifier = modifiers.ModifierBase(cfg=modifier_config) """ def __init__(self, cfg: ModifierCfg, data_dim: tuple[int, ...], device: str) -> None: """Initializes the modifier class. Args: cfg: Configuration parameters. data_dim: The dimensions of the data to be modified. First element is the batch size which usually corresponds to number of environments in the simulation. device: The device to run the modifier on. """ self._cfg = cfg self._data_dim = data_dim self._device = device
[文档] @abstractmethod def reset(self, env_ids: Sequence[int] | None = None): """Resets the Modifier. Args: env_ids: The environment ids. Defaults to None, in which case all environments are considered. """ raise NotImplementedError
[文档] @abstractmethod def __call__(self, data: torch.Tensor) -> torch.Tensor: """Abstract method for defining the modification function. Args: data: The data to be modified. Shape should match the data_dim passed during initialization. Returns: Modified data. Shape is the same as the input data. """ raise NotImplementedError