# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
from __future__ import annotations
import numpy as np
import torch
import trimesh
from typing import TYPE_CHECKING
import warp
from pxr import UsdGeom
import omni.isaac.lab.sim as sim_utils
from omni.isaac.lab.markers import VisualizationMarkers
from omni.isaac.lab.markers.config import FRAME_MARKER_CFG
from omni.isaac.lab.utils.warp import convert_to_warp_mesh
from .terrain_generator import TerrainGenerator
from .trimesh.utils import make_plane
from .utils import create_prim_from_mesh
if TYPE_CHECKING:
from .terrain_importer_cfg import TerrainImporterCfg
[文档]class TerrainImporter:
r"""A class to handle terrain meshes and import them into the simulator.
We assume that a terrain mesh comprises of sub-terrains that are arranged in a grid with
rows ``num_rows`` and columns ``num_cols``. The terrain origins are the positions of the sub-terrains
where the robot should be spawned.
Based on the configuration, the terrain importer handles computing the environment origins from the sub-terrain
origins. In a typical setup, the number of sub-terrains (:math:`num\_rows \times num\_cols`) is smaller than
the number of environments (:math:`num\_envs`). In this case, the environment origins are computed by
sampling the sub-terrain origins.
If a curriculum is used, it is possible to update the environment origins to terrain origins that correspond
to a harder difficulty. This is done by calling :func:`update_terrain_levels`. The idea comes from game-based
curriculum. For example, in a game, the player starts with easy levels and progresses to harder levels.
"""
meshes: dict[str, trimesh.Trimesh]
"""A dictionary containing the names of the meshes and their keys."""
warp_meshes: dict[str, warp.Mesh]
"""A dictionary containing the names of the warp meshes and their keys."""
terrain_origins: torch.Tensor | None
"""The origins of the sub-terrains in the added terrain mesh. Shape is (num_rows, num_cols, 3).
If None, then it is assumed no sub-terrains exist. The environment origins are computed in a grid.
"""
env_origins: torch.Tensor
"""The origins of the environments. Shape is (num_envs, 3)."""
[文档] def __init__(self, cfg: TerrainImporterCfg):
"""Initialize the terrain importer.
Args:
cfg: The configuration for the terrain importer.
Raises:
ValueError: If input terrain type is not supported.
ValueError: If terrain type is 'generator' and no configuration provided for ``terrain_generator``.
ValueError: If terrain type is 'usd' and no configuration provided for ``usd_path``.
ValueError: If terrain type is 'usd' or 'plane' and no configuration provided for ``env_spacing``.
"""
# check that the config is valid
cfg.validate()
# store inputs
self.cfg = cfg
self.device = sim_utils.SimulationContext.instance().device # type: ignore
# create a dict of meshes
self.meshes = dict()
self.warp_meshes = dict()
self.env_origins = None
self.terrain_origins = None
# private variables
self._terrain_flat_patches = dict()
# auto-import the terrain based on the config
if self.cfg.terrain_type == "generator":
# check config is provided
if self.cfg.terrain_generator is None:
raise ValueError("Input terrain type is 'generator' but no value provided for 'terrain_generator'.")
# generate the terrain
terrain_generator = TerrainGenerator(cfg=self.cfg.terrain_generator, device=self.device)
self.import_mesh("terrain", terrain_generator.terrain_mesh)
# configure the terrain origins based on the terrain generator
self.configure_env_origins(terrain_generator.terrain_origins)
# refer to the flat patches
self._terrain_flat_patches = terrain_generator.flat_patches
elif self.cfg.terrain_type == "usd":
# check if config is provided
if self.cfg.usd_path is None:
raise ValueError("Input terrain type is 'usd' but no value provided for 'usd_path'.")
# import the terrain
self.import_usd("terrain", self.cfg.usd_path)
# configure the origins in a grid
self.configure_env_origins()
elif self.cfg.terrain_type == "plane":
# load the plane
self.import_ground_plane("terrain")
# configure the origins in a grid
self.configure_env_origins()
else:
raise ValueError(f"Terrain type '{self.cfg.terrain_type}' not available.")
# set initial state of debug visualization
self.set_debug_vis(self.cfg.debug_vis)
"""
Properties.
"""
@property
def has_debug_vis_implementation(self) -> bool:
"""Whether the terrain importer has a debug visualization implemented.
This always returns True.
"""
return True
@property
def flat_patches(self) -> dict[str, torch.Tensor]:
"""A dictionary containing the sampled valid (flat) patches for the terrain.
This is only available if the terrain type is 'generator'. For other terrain types, this feature
is not available and the function returns an empty dictionary.
Please refer to the :attr:`TerrainGenerator.flat_patches` for more information.
"""
return self._terrain_flat_patches
"""
Operations - Visibility.
"""
[文档] def set_debug_vis(self, debug_vis: bool) -> bool:
"""Set the debug visualization of the terrain importer.
Args:
debug_vis: Whether to visualize the terrain origins.
Returns:
Whether the debug visualization was successfully set. False if the terrain
importer does not support debug visualization.
Raises:
RuntimeError: If terrain origins are not configured.
"""
# create a marker if necessary
if debug_vis:
if not hasattr(self, "origin_visualizer"):
self.origin_visualizer = VisualizationMarkers(
cfg=FRAME_MARKER_CFG.replace(prim_path="/Visuals/TerrainOrigin")
)
if self.terrain_origins is not None:
self.origin_visualizer.visualize(self.terrain_origins.reshape(-1, 3))
elif self.env_origins is not None:
self.origin_visualizer.visualize(self.env_origins.reshape(-1, 3))
else:
raise RuntimeError("Terrain origins are not configured.")
# set visibility
self.origin_visualizer.set_visibility(True)
else:
if hasattr(self, "origin_visualizer"):
self.origin_visualizer.set_visibility(False)
# report success
return True
"""
Operations - Import.
"""
[文档] def import_ground_plane(self, key: str, size: tuple[float, float] = (2.0e6, 2.0e6)):
"""Add a plane to the terrain importer.
Args:
key: The key to store the mesh.
size: The size of the plane. Defaults to (2.0e6, 2.0e6).
Raises:
ValueError: If a terrain with the same key already exists.
"""
# check if key exists
if key in self.meshes:
raise ValueError(f"Mesh with key {key} already exists. Existing keys: {self.meshes.keys()}.")
# create a plane
mesh = make_plane(size, height=0.0, center_zero=True)
# store the mesh
self.meshes[key] = mesh
# create a warp mesh
device = "cuda" if "cuda" in self.device else "cpu"
self.warp_meshes[key] = convert_to_warp_mesh(mesh.vertices, mesh.faces, device=device)
# get the mesh
ground_plane_cfg = sim_utils.GroundPlaneCfg(physics_material=self.cfg.physics_material, size=size)
ground_plane_cfg.func(self.cfg.prim_path, ground_plane_cfg)
[文档] def import_mesh(self, key: str, mesh: trimesh.Trimesh):
"""Import a mesh into the simulator.
The mesh is imported into the simulator under the prim path ``cfg.prim_path/{key}``. The created path
contains the mesh as a :class:`pxr.UsdGeom` instance along with visual or physics material prims.
Args:
key: The key to store the mesh.
mesh: The mesh to import.
Raises:
ValueError: If a terrain with the same key already exists.
"""
# check if key exists
if key in self.meshes:
raise ValueError(f"Mesh with key {key} already exists. Existing keys: {self.meshes.keys()}.")
# store the mesh
self.meshes[key] = mesh
# create a warp mesh
device = "cuda" if "cuda" in self.device else "cpu"
self.warp_meshes[key] = convert_to_warp_mesh(mesh.vertices, mesh.faces, device=device)
# get the mesh
mesh = self.meshes[key]
mesh_prim_path = self.cfg.prim_path + f"/{key}"
# import the mesh
create_prim_from_mesh(
mesh_prim_path,
mesh,
visual_material=self.cfg.visual_material,
physics_material=self.cfg.physics_material,
)
[文档] def import_usd(self, key: str, usd_path: str):
"""Import a mesh from a USD file.
We assume that the USD file contains a single mesh. If the USD file contains multiple meshes, then
the first mesh is used. The function mainly helps in registering the mesh into the warp meshes
and the meshes dictionary.
Note:
We do not apply any material properties to the mesh. The material properties should
be defined in the USD file.
Args:
key: The key to store the mesh.
usd_path: The path to the USD file.
Raises:
ValueError: If a terrain with the same key already exists.
"""
# add mesh to the dict
if key in self.meshes:
raise ValueError(f"Mesh with key {key} already exists. Existing keys: {self.meshes.keys()}.")
# add the prim path
cfg = sim_utils.UsdFileCfg(usd_path=usd_path)
cfg.func(self.cfg.prim_path + f"/{key}", cfg)
# traverse the prim and get the collision mesh
# THINK: Should the user specify the collision mesh?
mesh_prim = sim_utils.get_first_matching_child_prim(
self.cfg.prim_path + f"/{key}", lambda prim: prim.GetTypeName() == "Mesh"
)
# check if the mesh is valid
if mesh_prim is None:
raise ValueError(f"Could not find any collision mesh in {usd_path}. Please check asset.")
# cast into UsdGeomMesh
mesh_prim = UsdGeom.Mesh(mesh_prim)
# store the mesh
vertices = np.asarray(mesh_prim.GetPointsAttr().Get())
faces = np.asarray(mesh_prim.GetFaceVertexIndicesAttr().Get()).reshape(-1, 3)
self.meshes[key] = trimesh.Trimesh(vertices=vertices, faces=faces)
# create a warp mesh
device = "cuda" if "cuda" in self.device else "cpu"
self.warp_meshes[key] = convert_to_warp_mesh(vertices, faces, device=device)
"""
Operations - Origins.
"""
[文档] def update_env_origins(self, env_ids: torch.Tensor, move_up: torch.Tensor, move_down: torch.Tensor):
"""Update the environment origins based on the terrain levels."""
# check if grid-like spawning
if self.terrain_origins is None:
return
# update terrain level for the envs
self.terrain_levels[env_ids] += 1 * move_up - 1 * move_down
# robots that solve the last level are sent to a random one
# the minimum level is zero
self.terrain_levels[env_ids] = torch.where(
self.terrain_levels[env_ids] >= self.max_terrain_level,
torch.randint_like(self.terrain_levels[env_ids], self.max_terrain_level),
torch.clip(self.terrain_levels[env_ids], 0),
)
# update the env origins
self.env_origins[env_ids] = self.terrain_origins[self.terrain_levels[env_ids], self.terrain_types[env_ids]]
"""
Internal helpers.
"""
def _compute_env_origins_curriculum(self, num_envs: int, origins: torch.Tensor) -> torch.Tensor:
"""Compute the origins of the environments defined by the sub-terrains origins."""
# extract number of rows and cols
num_rows, num_cols = origins.shape[:2]
# maximum initial level possible for the terrains
if self.cfg.max_init_terrain_level is None:
max_init_level = num_rows - 1
else:
max_init_level = min(self.cfg.max_init_terrain_level, num_rows - 1)
# store maximum terrain level possible
self.max_terrain_level = num_rows
# define all terrain levels and types available
self.terrain_levels = torch.randint(0, max_init_level + 1, (num_envs,), device=self.device)
self.terrain_types = torch.div(
torch.arange(num_envs, device=self.device),
(num_envs / num_cols),
rounding_mode="floor",
).to(torch.long)
# create tensor based on number of environments
env_origins = torch.zeros(num_envs, 3, device=self.device)
env_origins[:] = origins[self.terrain_levels, self.terrain_types]
return env_origins
def _compute_env_origins_grid(self, num_envs: int, env_spacing: float) -> torch.Tensor:
"""Compute the origins of the environments in a grid based on configured spacing."""
# create tensor based on number of environments
env_origins = torch.zeros(num_envs, 3, device=self.device)
# create a grid of origins
num_rows = np.ceil(num_envs / int(np.sqrt(num_envs)))
num_cols = np.ceil(num_envs / num_rows)
ii, jj = torch.meshgrid(
torch.arange(num_rows, device=self.device), torch.arange(num_cols, device=self.device), indexing="ij"
)
env_origins[:, 0] = -(ii.flatten()[:num_envs] - (num_rows - 1) / 2) * env_spacing
env_origins[:, 1] = (jj.flatten()[:num_envs] - (num_cols - 1) / 2) * env_spacing
env_origins[:, 2] = 0.0
return env_origins