# Copyright (c) 2022-2024, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
import numpy as np
import os
import torch
import trimesh
import omni.log
from omni.isaac.lab.utils.dict import dict_to_md5_hash
from omni.isaac.lab.utils.io import dump_yaml
from omni.isaac.lab.utils.timer import Timer
from omni.isaac.lab.utils.warp import convert_to_warp_mesh
from .height_field import HfTerrainBaseCfg
from .terrain_generator_cfg import FlatPatchSamplingCfg, SubTerrainBaseCfg, TerrainGeneratorCfg
from .trimesh.utils import make_border
from .utils import color_meshes_by_height, find_flat_patches
[文档]class TerrainGenerator:
r"""Terrain generator to handle different terrain generation functions.
The terrains are represented as meshes. These are obtained either from height fields or by using the
`trimesh <https://trimsh.org/trimesh.html>`__ library. The height field representation is more
flexible, but it is less computationally and memory efficient than the trimesh representation.
All terrain generation functions take in the argument :obj:`difficulty` which determines the complexity
of the terrain. The difficulty is a number between 0 and 1, where 0 is the easiest and 1 is the hardest.
In most cases, the difficulty is used for linear interpolation between different terrain parameters.
For example, in a pyramid stairs terrain the step height is interpolated between the specified minimum
and maximum step height.
Each sub-terrain has a corresponding configuration class that can be used to specify the parameters
of the terrain. The configuration classes are inherited from the :class:`SubTerrainBaseCfg` class
which contains the common parameters for all terrains.
If a curriculum is used, the terrains are generated based on their difficulty parameter.
The difficulty is varied linearly over the number of rows (i.e. along x) with a small random value
added to the difficulty to ensure that the columns with the same sub-terrain type are not exactly
the same. The difficulty parameter for a sub-terrain at a given row is calculated as:
.. math::
\text{difficulty} = \frac{\text{row_id} + \eta}{\text{num_rows}} \times (\text{upper} - \text{lower}) + \text{lower}
where :math:`\eta\sim\mathcal{U}(0, 1)` is a random perturbation to the difficulty, and
:math:`(\text{lower}, \text{upper})` is the range of the difficulty parameter, specified using the
:attr:`~TerrainGeneratorCfg.difficulty_range` parameter.
If a curriculum is not used, the terrains are generated randomly. In this case, the difficulty parameter
is randomly sampled from the specified range, given by the :attr:`~TerrainGeneratorCfg.difficulty_range` parameter:
.. math::
\text{difficulty} \sim \mathcal{U}(\text{lower}, \text{upper})
If the :attr:`~TerrainGeneratorCfg.flat_patch_sampling` is specified for a sub-terrain, flat patches are sampled
on the terrain. These can be used for spawning robots, targets, etc. The sampled patches are stored
in the :obj:`flat_patches` dictionary. The key specifies the intention of the flat patches and the
value is a tensor containing the flat patches for each sub-terrain.
If the flag :attr:`~TerrainGeneratorCfg.use_cache` is set to True, the terrains are cached based on their
sub-terrain configurations. This means that if the same sub-terrain configuration is used
multiple times, the terrain is only generated once and then reused. This is useful when
generating complex sub-terrains that take a long time to generate.
.. attention::
The terrain generation has its own seed parameter. This is set using the :attr:`TerrainGeneratorCfg.seed`
parameter. If the seed is not set and the caching is disabled, the terrain generation may not be
completely reproducible.
"""
terrain_mesh: trimesh.Trimesh
"""A single trimesh.Trimesh object for all the generated sub-terrains."""
terrain_meshes: list[trimesh.Trimesh]
"""List of trimesh.Trimesh objects for all the generated sub-terrains."""
terrain_origins: np.ndarray
"""The origin of each sub-terrain. Shape is (num_rows, num_cols, 3)."""
flat_patches: dict[str, torch.Tensor]
"""A dictionary of sampled valid (flat) patches for each sub-terrain.
The dictionary keys are the names of the flat patch sampling configurations. This maps to a
tensor containing the flat patches for each sub-terrain. The shape of the tensor is
(num_rows, num_cols, num_patches, 3).
For instance, the key "root_spawn" maps to a tensor containing the flat patches for spawning an asset.
Similarly, the key "target_spawn" maps to a tensor containing the flat patches for setting targets.
"""
[文档] def __init__(self, cfg: TerrainGeneratorCfg, device: str = "cpu"):
"""Initialize the terrain generator.
Args:
cfg: Configuration for the terrain generator.
device: The device to use for the flat patches tensor.
"""
# check inputs
if len(cfg.sub_terrains) == 0:
raise ValueError("No sub-terrains specified! Please add at least one sub-terrain.")
# store inputs
self.cfg = cfg
self.device = device
# set common values to all sub-terrains config
for sub_cfg in self.cfg.sub_terrains.values():
# size of all terrains
sub_cfg.size = self.cfg.size
# params for height field terrains
if isinstance(sub_cfg, HfTerrainBaseCfg):
sub_cfg.horizontal_scale = self.cfg.horizontal_scale
sub_cfg.vertical_scale = self.cfg.vertical_scale
sub_cfg.slope_threshold = self.cfg.slope_threshold
# throw a warning if the cache is enabled but the seed is not set
if self.cfg.use_cache and self.cfg.seed is None:
omni.log.warn(
"Cache is enabled but the seed is not set. The terrain generation will not be reproducible."
" Please set the seed in the terrain generator configuration to make the generation reproducible."
)
# if the seed is not set, we assume there is a global seed set and use that.
# this ensures that the terrain is reproducible if the seed is set at the beginning of the program.
if self.cfg.seed is not None:
seed = self.cfg.seed
else:
seed = np.random.get_state()[1][0]
# set the seed for reproducibility
# note: we create a new random number generator to avoid affecting the global state
# in the other places where random numbers are used.
self.np_rng = np.random.default_rng(seed)
# buffer for storing valid patches
self.flat_patches = {}
# create a list of all sub-terrains
self.terrain_meshes = list()
self.terrain_origins = np.zeros((self.cfg.num_rows, self.cfg.num_cols, 3))
# parse configuration and add sub-terrains
# create terrains based on curriculum or randomly
if self.cfg.curriculum:
with Timer("[INFO] Generating terrains based on curriculum took"):
self._generate_curriculum_terrains()
else:
with Timer("[INFO] Generating terrains randomly took"):
self._generate_random_terrains()
# add a border around the terrains
self._add_terrain_border()
# combine all the sub-terrains into a single mesh
self.terrain_mesh = trimesh.util.concatenate(self.terrain_meshes)
# color the terrain mesh
if self.cfg.color_scheme == "height":
self.terrain_mesh = color_meshes_by_height(self.terrain_mesh)
elif self.cfg.color_scheme == "random":
self.terrain_mesh.visual.vertex_colors = self.np_rng.choice(
range(256), size=(len(self.terrain_mesh.vertices), 4)
)
elif self.cfg.color_scheme == "none":
pass
else:
raise ValueError(f"Invalid color scheme: {self.cfg.color_scheme}.")
# offset the entire terrain and origins so that it is centered
# -- terrain mesh
transform = np.eye(4)
transform[:2, -1] = -self.cfg.size[0] * self.cfg.num_rows * 0.5, -self.cfg.size[1] * self.cfg.num_cols * 0.5
self.terrain_mesh.apply_transform(transform)
# -- terrain origins
self.terrain_origins += transform[:3, -1]
# -- valid patches
terrain_origins_torch = torch.tensor(self.terrain_origins, dtype=torch.float, device=self.device).unsqueeze(2)
for name, value in self.flat_patches.items():
self.flat_patches[name] = value + terrain_origins_torch
def __str__(self):
"""Return a string representation of the terrain generator."""
msg = "Terrain Generator:"
msg += f"\n\tSeed: {self.cfg.seed}"
msg += f"\n\tNumber of rows: {self.cfg.num_rows}"
msg += f"\n\tNumber of columns: {self.cfg.num_cols}"
msg += f"\n\tSub-terrain size: {self.cfg.size}"
msg += f"\n\tSub-terrain types: {list(self.cfg.sub_terrains.keys())}"
msg += f"\n\tCurriculum: {self.cfg.curriculum}"
msg += f"\n\tDifficulty range: {self.cfg.difficulty_range}"
msg += f"\n\tColor scheme: {self.cfg.color_scheme}"
msg += f"\n\tUse cache: {self.cfg.use_cache}"
if self.cfg.use_cache:
msg += f"\n\tCache directory: {self.cfg.cache_dir}"
return msg
"""
Terrain generator functions.
"""
def _generate_random_terrains(self):
"""Add terrains based on randomly sampled difficulty parameter."""
# normalize the proportions of the sub-terrains
proportions = np.array([sub_cfg.proportion for sub_cfg in self.cfg.sub_terrains.values()])
proportions /= np.sum(proportions)
# create a list of all terrain configs
sub_terrains_cfgs = list(self.cfg.sub_terrains.values())
# randomly sample sub-terrains
for index in range(self.cfg.num_rows * self.cfg.num_cols):
# coordinate index of the sub-terrain
(sub_row, sub_col) = np.unravel_index(index, (self.cfg.num_rows, self.cfg.num_cols))
# randomly sample terrain index
sub_index = self.np_rng.choice(len(proportions), p=proportions)
# randomly sample difficulty parameter
difficulty = self.np_rng.uniform(*self.cfg.difficulty_range)
# generate terrain
mesh, origin = self._get_terrain_mesh(difficulty, sub_terrains_cfgs[sub_index])
# add to sub-terrains
self._add_sub_terrain(mesh, origin, sub_row, sub_col, sub_terrains_cfgs[sub_index])
def _generate_curriculum_terrains(self):
"""Add terrains based on the difficulty parameter."""
# normalize the proportions of the sub-terrains
proportions = np.array([sub_cfg.proportion for sub_cfg in self.cfg.sub_terrains.values()])
proportions /= np.sum(proportions)
# find the sub-terrain index for each column
# we generate the terrains based on their proportion (not randomly sampled)
sub_indices = []
for index in range(self.cfg.num_cols):
sub_index = np.min(np.where(index / self.cfg.num_cols + 0.001 < np.cumsum(proportions))[0])
sub_indices.append(sub_index)
sub_indices = np.array(sub_indices, dtype=np.int32)
# create a list of all terrain configs
sub_terrains_cfgs = list(self.cfg.sub_terrains.values())
# curriculum-based sub-terrains
for sub_col in range(self.cfg.num_cols):
for sub_row in range(self.cfg.num_rows):
# vary the difficulty parameter linearly over the number of rows
# note: based on the proportion, multiple columns can have the same sub-terrain type.
# Thus to increase the diversity along the rows, we add a small random value to the difficulty.
# This ensures that the terrains are not exactly the same. For example, if the
# the row index is 2 and the number of rows is 10, the nominal difficulty is 0.2.
# We add a small random value to the difficulty to make it between 0.2 and 0.3.
lower, upper = self.cfg.difficulty_range
difficulty = (sub_row + self.np_rng.uniform()) / self.cfg.num_rows
difficulty = lower + (upper - lower) * difficulty
# generate terrain
mesh, origin = self._get_terrain_mesh(difficulty, sub_terrains_cfgs[sub_indices[sub_col]])
# add to sub-terrains
self._add_sub_terrain(mesh, origin, sub_row, sub_col, sub_terrains_cfgs[sub_indices[sub_col]])
"""
Internal helper functions.
"""
def _add_terrain_border(self):
"""Add a surrounding border over all the sub-terrains into the terrain meshes."""
# border parameters
border_size = (
self.cfg.num_rows * self.cfg.size[0] + 2 * self.cfg.border_width,
self.cfg.num_cols * self.cfg.size[1] + 2 * self.cfg.border_width,
)
inner_size = (self.cfg.num_rows * self.cfg.size[0], self.cfg.num_cols * self.cfg.size[1])
border_center = (
self.cfg.num_rows * self.cfg.size[0] / 2,
self.cfg.num_cols * self.cfg.size[1] / 2,
-self.cfg.border_height / 2,
)
# border mesh
border_meshes = make_border(border_size, inner_size, height=self.cfg.border_height, position=border_center)
border = trimesh.util.concatenate(border_meshes)
# update the faces to have minimal triangles
selector = ~(np.asarray(border.triangles)[:, :, 2] < -0.1).any(1)
border.update_faces(selector)
# add the border to the list of meshes
self.terrain_meshes.append(border)
def _add_sub_terrain(
self, mesh: trimesh.Trimesh, origin: np.ndarray, row: int, col: int, sub_terrain_cfg: SubTerrainBaseCfg
):
"""Add input sub-terrain to the list of sub-terrains.
This function adds the input sub-terrain mesh to the list of sub-terrains and updates the origin
of the sub-terrain in the list of origins. It also samples flat patches if specified.
Args:
mesh: The mesh of the sub-terrain.
origin: The origin of the sub-terrain.
row: The row index of the sub-terrain.
col: The column index of the sub-terrain.
"""
# sample flat patches if specified
if sub_terrain_cfg.flat_patch_sampling is not None:
omni.log.info(f"Sampling flat patches for sub-terrain at (row, col): ({row}, {col})")
# convert the mesh to warp mesh
wp_mesh = convert_to_warp_mesh(mesh.vertices, mesh.faces, device=self.device)
# sample flat patches based on each patch configuration for that sub-terrain
for name, patch_cfg in sub_terrain_cfg.flat_patch_sampling.items():
patch_cfg: FlatPatchSamplingCfg
# create the flat patches tensor (if not already created)
if name not in self.flat_patches:
self.flat_patches[name] = torch.zeros(
(self.cfg.num_rows, self.cfg.num_cols, patch_cfg.num_patches, 3), device=self.device
)
# add the flat patches to the tensor
self.flat_patches[name][row, col] = find_flat_patches(
wp_mesh=wp_mesh,
origin=origin,
num_patches=patch_cfg.num_patches,
patch_radius=patch_cfg.patch_radius,
x_range=patch_cfg.x_range,
y_range=patch_cfg.y_range,
z_range=patch_cfg.z_range,
max_height_diff=patch_cfg.max_height_diff,
)
# transform the mesh to the correct position
transform = np.eye(4)
transform[0:2, -1] = (row + 0.5) * self.cfg.size[0], (col + 0.5) * self.cfg.size[1]
mesh.apply_transform(transform)
# add mesh to the list
self.terrain_meshes.append(mesh)
# add origin to the list
self.terrain_origins[row, col] = origin + transform[:3, -1]
def _get_terrain_mesh(self, difficulty: float, cfg: SubTerrainBaseCfg) -> tuple[trimesh.Trimesh, np.ndarray]:
"""Generate a sub-terrain mesh based on the input difficulty parameter.
If caching is enabled, the sub-terrain is cached and loaded from the cache if it exists.
The cache is stored in the cache directory specified in the configuration.
.. Note:
This function centers the 2D center of the mesh and its specified origin such that the
2D center becomes :math:`(0, 0)` instead of :math:`(size[0] / 2, size[1] / 2).
Args:
difficulty: The difficulty parameter.
cfg: The configuration of the sub-terrain.
Returns:
The sub-terrain mesh and origin.
"""
# copy the configuration
cfg = cfg.copy()
# add other parameters to the sub-terrain configuration
cfg.difficulty = float(difficulty)
cfg.seed = self.cfg.seed
# generate hash for the sub-terrain
sub_terrain_hash = dict_to_md5_hash(cfg.to_dict())
# generate the file name
sub_terrain_cache_dir = os.path.join(self.cfg.cache_dir, sub_terrain_hash)
sub_terrain_obj_filename = os.path.join(sub_terrain_cache_dir, "mesh.obj")
sub_terrain_csv_filename = os.path.join(sub_terrain_cache_dir, "origin.csv")
sub_terrain_meta_filename = os.path.join(sub_terrain_cache_dir, "cfg.yaml")
# check if hash exists - if true, load the mesh and origin and return
if self.cfg.use_cache and os.path.exists(sub_terrain_obj_filename):
# load existing mesh
mesh = trimesh.load_mesh(sub_terrain_obj_filename, process=False)
origin = np.loadtxt(sub_terrain_csv_filename, delimiter=",")
# return the generated mesh
return mesh, origin
# generate the terrain
meshes, origin = cfg.function(difficulty, cfg)
mesh = trimesh.util.concatenate(meshes)
# offset mesh such that they are in their center
transform = np.eye(4)
transform[0:2, -1] = -cfg.size[0] * 0.5, -cfg.size[1] * 0.5
mesh.apply_transform(transform)
# change origin to be in the center of the sub-terrain
origin += transform[0:3, -1]
# if caching is enabled, save the mesh and origin
if self.cfg.use_cache:
# create the cache directory
os.makedirs(sub_terrain_cache_dir, exist_ok=True)
# save the data
mesh.export(sub_terrain_obj_filename)
np.savetxt(sub_terrain_csv_filename, origin, delimiter=",", header="x,y,z")
dump_yaml(sub_terrain_meta_filename, cfg)
# return the generated mesh
return mesh, origin