omni.isaac.lab.sensors.imu.imu 源代码

# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause

from __future__ import annotations

import torch
from collections.abc import Sequence
from typing import TYPE_CHECKING

import omni.isaac.core.utils.stage as stage_utils
import omni.physics.tensors.impl.api as physx
from pxr import UsdPhysics

import omni.isaac.lab.sim as sim_utils
import omni.isaac.lab.utils.math as math_utils
from omni.isaac.lab.markers import VisualizationMarkers

from ..sensor_base import SensorBase
from .imu_data import ImuData

if TYPE_CHECKING:
    from .imu_cfg import ImuCfg


[文档]class Imu(SensorBase): """The Inertia Measurement Unit (IMU) sensor. The sensor can be attached to any :class:`RigidObject` or :class:`Articulation` in the scene. The sensor provides complete state information. The sensor is primarily used to provide the linear acceleration and angular velocity of the object in the body frame. The sensor also provides the position and orientation of the object in the world frame and the angular acceleration and linear velocity in the body frame. The extra data outputs are useful for simulating with or comparing against "perfect" state estimation. .. note:: We are computing the accelerations using numerical differentiation from the velocities. Consequently, the IMU sensor accuracy depends on the chosen phsyx timestep. For a sufficient accuracy, we recommend to keep the timestep at least as 200Hz. .. note:: It is suggested to use the OffsetCfg to define an IMU frame relative to a rigid body prim defined at the root of a :class:`RigidObject` or a prim that is defined by a non-fixed joint in an :class:`Articulation` (except for the root of a fixed based articulation). The use frames with fixed joints and small mass/inertia to emulate a transform relative to a body frame can result in lower performance and accuracy. """ cfg: ImuCfg """The configuration parameters."""
[文档] def __init__(self, cfg: ImuCfg): """Initializes the Imu sensor. Args: cfg: The configuration parameters. """ # initialize base class super().__init__(cfg) # Create empty variables for storing output data self._data = ImuData()
def __str__(self) -> str: """Returns: A string containing information about the instance.""" return ( f"Imu sensor @ '{self.cfg.prim_path}': \n" f"\tview type : {self._view.__class__}\n" f"\tupdate period (s) : {self.cfg.update_period}\n" f"\tnumber of sensors : {self._view.count}\n" ) """ Properties """ @property def data(self) -> ImuData: # update sensors if needed self._update_outdated_buffers() # return the data return self._data @property def num_instances(self) -> int: return self._view.count """ Operations """
[文档] def reset(self, env_ids: Sequence[int] | None = None): # reset the timestamps super().reset(env_ids) # resolve None if env_ids is None: env_ids = slice(None) # reset accumulative data buffers self._data.quat_w[env_ids] = 0.0 self._data.lin_vel_b[env_ids] = 0.0 self._data.ang_vel_b[env_ids] = 0.0 self._data.lin_acc_b[env_ids] = 0.0 self._data.ang_acc_b[env_ids] = 0.0
def update(self, dt: float, force_recompute: bool = False): # save timestamp self._dt = dt # execute updating super().update(dt, force_recompute) """ Implementation. """ def _initialize_impl(self): """Initializes the sensor handles and internal buffers. This function creates handles and registers the provided data types with the replicator registry to be able to access the data from the sensor. It also initializes the internal buffers to store the data. Raises: RuntimeError: If the imu prim is not a RigidBodyPrim """ # Initialize parent class super()._initialize_impl() # create simulation view self._physics_sim_view = physx.create_simulation_view(self._backend) self._physics_sim_view.set_subspace_roots("/") # check if the prim at path is a rigid prim prim = sim_utils.find_first_matching_prim(self.cfg.prim_path) if prim is None: raise RuntimeError(f"Failed to find a prim at path expression: {self.cfg.prim_path}") # check if it is a RigidBody Prim if prim.HasAPI(UsdPhysics.RigidBodyAPI): self._view = self._physics_sim_view.create_rigid_body_view(self.cfg.prim_path.replace(".*", "*")) else: raise RuntimeError(f"Failed to find a RigidBodyAPI for the prim paths: {self.cfg.prim_path}") # Create internal buffers self._initialize_buffers_impl() def _update_buffers_impl(self, env_ids: Sequence[int]): """Fills the buffers of the sensor data.""" # check if self._dt is set (this is set in the update function) if not hasattr(self, "_dt"): raise RuntimeError( "The update function must be called before the data buffers are accessed the first time." ) # default to all sensors if len(env_ids) == self._num_envs: env_ids = slice(None) # obtain the poses of the sensors pos_w, quat_w = self._view.get_transforms()[env_ids].split([3, 4], dim=-1) quat_w = math_utils.convert_quat(quat_w, to="wxyz") # store the poses self._data.pos_w[env_ids] = pos_w + math_utils.quat_rotate(quat_w, self._offset_pos_b[env_ids]) self._data.quat_w[env_ids] = math_utils.quat_mul(quat_w, self._offset_quat_b[env_ids]) # get the offset from COM to link origin com_pos_b = self._view.get_coms().to(self.device).split([3, 4], dim=-1)[0] # obtain the velocities of the link COM lin_vel_w, ang_vel_w = self._view.get_velocities()[env_ids].split([3, 3], dim=-1) # if an offset is present or the COM does not agree with the link origin, the linear velocity has to be # transformed taking the angular velocity into account lin_vel_w += torch.linalg.cross( ang_vel_w, math_utils.quat_rotate(quat_w, self._offset_pos_b[env_ids] - com_pos_b[env_ids]), dim=-1 ) # numerical derivative lin_acc_w = (lin_vel_w - self._prev_lin_vel_w[env_ids]) / self._dt + self._gravity_bias_w[env_ids] ang_acc_w = (ang_vel_w - self._prev_ang_vel_w[env_ids]) / self._dt # store the velocities self._data.lin_vel_b[env_ids] = math_utils.quat_rotate_inverse(self._data.quat_w[env_ids], lin_vel_w) self._data.ang_vel_b[env_ids] = math_utils.quat_rotate_inverse(self._data.quat_w[env_ids], ang_vel_w) # store the accelerations self._data.lin_acc_b[env_ids] = math_utils.quat_rotate_inverse(self._data.quat_w[env_ids], lin_acc_w) self._data.ang_acc_b[env_ids] = math_utils.quat_rotate_inverse(self._data.quat_w[env_ids], ang_acc_w) self._prev_lin_vel_w[env_ids] = lin_vel_w self._prev_ang_vel_w[env_ids] = ang_vel_w def _initialize_buffers_impl(self): """Create buffers for storing data.""" # data buffers self._data.pos_w = torch.zeros(self._view.count, 3, device=self._device) self._data.quat_w = torch.zeros(self._view.count, 4, device=self._device) self._data.quat_w[:, 0] = 1.0 self._data.lin_vel_b = torch.zeros_like(self._data.pos_w) self._data.ang_vel_b = torch.zeros_like(self._data.pos_w) self._data.lin_acc_b = torch.zeros_like(self._data.pos_w) self._data.ang_acc_b = torch.zeros_like(self._data.pos_w) self._prev_lin_vel_w = torch.zeros_like(self._data.pos_w) self._prev_ang_vel_w = torch.zeros_like(self._data.pos_w) # store sensor offset transformation self._offset_pos_b = torch.tensor(list(self.cfg.offset.pos), device=self._device).repeat(self._view.count, 1) self._offset_quat_b = torch.tensor(list(self.cfg.offset.rot), device=self._device).repeat(self._view.count, 1) # set gravity bias self._gravity_bias_w = torch.tensor(list(self.cfg.gravity_bias), device=self._device).repeat( self._view.count, 1 ) def _set_debug_vis_impl(self, debug_vis: bool): # set visibility of markers # note: parent only deals with callbacks. not their visibility if debug_vis: # create markers if necessary for the first tome if not hasattr(self, "acceleration_visualizer"): self.acceleration_visualizer = VisualizationMarkers(self.cfg.visualizer_cfg) # set their visibility to true self.acceleration_visualizer.set_visibility(True) else: if hasattr(self, "acceleration_visualizer"): self.acceleration_visualizer.set_visibility(False) def _debug_vis_callback(self, event): # safely return if view becomes invalid # note: this invalidity happens because of isaac sim view callbacks if self._view is None: return # get marker location # -- base state base_pos_w = self._data.pos_w.clone() base_pos_w[:, 2] += 0.5 # -- resolve the scales default_scale = self.acceleration_visualizer.cfg.markers["arrow"].scale arrow_scale = torch.tensor(default_scale, device=self.device).repeat(self._data.lin_acc_b.shape[0], 1) # get up axis of current stage up_axis = stage_utils.get_stage_up_axis() # arrow-direction quat_opengl = math_utils.quat_from_matrix( math_utils.create_rotation_matrix_from_view( self._data.pos_w, self._data.pos_w + math_utils.quat_rotate(self._data.quat_w, self._data.lin_acc_b), up_axis=up_axis, device=self._device, ) ) quat_w = math_utils.convert_camera_frame_orientation_convention(quat_opengl, "opengl", "world") # display markers self.acceleration_visualizer.visualize(base_pos_w, quat_w, arrow_scale)