omni.isaac.lab.sensors.contact_sensor.contact_sensor 源代码
# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
# Ignore optional memory usage warning globally
# pyright: reportOptionalSubscript=false
from __future__ import annotations
import torch
from collections.abc import Sequence
from typing import TYPE_CHECKING
import omni.physics.tensors.impl.api as physx
from pxr import PhysxSchema
import omni.isaac.lab.sim as sim_utils
import omni.isaac.lab.utils.string as string_utils
from omni.isaac.lab.markers import VisualizationMarkers
from omni.isaac.lab.utils.math import convert_quat
from ..sensor_base import SensorBase
from .contact_sensor_data import ContactSensorData
if TYPE_CHECKING:
from .contact_sensor_cfg import ContactSensorCfg
[文档]class ContactSensor(SensorBase):
"""A contact reporting sensor.
The contact sensor reports the normal contact forces on a rigid body in the world frame.
It relies on the `PhysX ContactReporter`_ API to be activated on the rigid bodies.
To enable the contact reporter on a rigid body, please make sure to enable the
:attr:`omni.isaac.lab.sim.spawner.RigidObjectSpawnerCfg.activate_contact_sensors` on your
asset spawner configuration. This will enable the contact reporter on all the rigid bodies
in the asset.
The sensor can be configured to report the contact forces on a set of bodies with a given
filter pattern using the :attr:`ContactSensorCfg.filter_prim_paths_expr`. This is useful
when you want to report the contact forces between the sensor bodies and a specific set of
bodies in the scene. The data can be accessed using the :attr:`ContactSensorData.force_matrix_w`.
Please check the documentation on `RigidContactView`_ for more details.
The reporting of the filtered contact forces is only possible as one-to-many. This means that only one
sensor body in an environment can be filtered against multiple bodies in that environment. If you need to
filter multiple sensor bodies against multiple bodies, you need to create separate sensors for each sensor
body.
As an example, suppose you want to report the contact forces for all the feet of a robot against an object
exclusively. In that case, setting the :attr:`ContactSensorCfg.prim_path` and
:attr:`ContactSensorCfg.filter_prim_paths_expr` with ``{ENV_REGEX_NS}/Robot/.*_FOOT`` and ``{ENV_REGEX_NS}/Object``
respectively will not work. Instead, you need to create a separate sensor for each foot and filter
it against the object.
.. _PhysX ContactReporter: https://docs.omniverse.nvidia.com/kit/docs/omni_usd_schema_physics/104.2/class_physx_schema_physx_contact_report_a_p_i.html
.. _RigidContactView: https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.isaac.core/docs/index.html#omni.isaac.core.prims.RigidContactView
"""
cfg: ContactSensorCfg
"""The configuration parameters."""
[文档] def __init__(self, cfg: ContactSensorCfg):
"""Initializes the contact sensor object.
Args:
cfg: The configuration parameters.
"""
# initialize base class
super().__init__(cfg)
# Create empty variables for storing output data
self._data: ContactSensorData = ContactSensorData()
# initialize self._body_physx_view for running in extension mode
self._body_physx_view = None
def __str__(self) -> str:
"""Returns: A string containing information about the instance."""
return (
f"Contact sensor @ '{self.cfg.prim_path}': \n"
f"\tview type : {self.body_physx_view.__class__}\n"
f"\tupdate period (s) : {self.cfg.update_period}\n"
f"\tnumber of bodies : {self.num_bodies}\n"
f"\tbody names : {self.body_names}\n"
)
"""
Properties
"""
@property
def num_instances(self) -> int:
return self.body_physx_view.count
@property
def data(self) -> ContactSensorData:
# update sensors if needed
self._update_outdated_buffers()
# return the data
return self._data
@property
def num_bodies(self) -> int:
"""Number of bodies with contact sensors attached."""
return self._num_bodies
@property
def body_names(self) -> list[str]:
"""Ordered names of bodies with contact sensors attached."""
prim_paths = self.body_physx_view.prim_paths[: self.num_bodies]
return [path.split("/")[-1] for path in prim_paths]
@property
def body_physx_view(self) -> physx.RigidBodyView:
"""View for the rigid bodies captured (PhysX).
Note:
Use this view with caution. It requires handling of tensors in a specific way.
"""
return self._body_physx_view
@property
def contact_physx_view(self) -> physx.RigidContactView:
"""Contact reporter view for the bodies (PhysX).
Note:
Use this view with caution. It requires handling of tensors in a specific way.
"""
return self._contact_physx_view
"""
Operations
"""
[文档] def reset(self, env_ids: Sequence[int] | None = None):
# reset the timers and counters
super().reset(env_ids)
# resolve None
if env_ids is None:
env_ids = slice(None)
# reset accumulative data buffers
self._data.net_forces_w[env_ids] = 0.0
self._data.net_forces_w_history[env_ids] = 0.0
if self.cfg.history_length > 0:
self._data.net_forces_w_history[env_ids] = 0.0
# reset force matrix
if len(self.cfg.filter_prim_paths_expr) != 0:
self._data.force_matrix_w[env_ids] = 0.0
# reset the current air time
if self.cfg.track_air_time:
self._data.current_air_time[env_ids] = 0.0
self._data.last_air_time[env_ids] = 0.0
self._data.current_contact_time[env_ids] = 0.0
self._data.last_contact_time[env_ids] = 0.0
[文档] def find_bodies(self, name_keys: str | Sequence[str], preserve_order: bool = False) -> tuple[list[int], list[str]]:
"""Find bodies in the articulation based on the name keys.
Args:
name_keys: A regular expression or a list of regular expressions to match the body names.
preserve_order: Whether to preserve the order of the name keys in the output. Defaults to False.
Returns:
A tuple of lists containing the body indices and names.
"""
return string_utils.resolve_matching_names(name_keys, self.body_names, preserve_order)
[文档] def compute_first_contact(self, dt: float, abs_tol: float = 1.0e-8) -> torch.Tensor:
"""Checks if bodies that have established contact within the last :attr:`dt` seconds.
This function checks if the bodies have established contact within the last :attr:`dt` seconds
by comparing the current contact time with the given time period. If the contact time is less
than the given time period, then the bodies are considered to be in contact.
Note:
The function assumes that :attr:`dt` is a factor of the sensor update time-step. In other
words :math:`dt / dt_sensor = n`, where :math:`n` is a natural number. This is always true
if the sensor is updated by the physics or the environment stepping time-step and the sensor
is read by the environment stepping time-step.
Args:
dt: The time period since the contact was established.
abs_tol: The absolute tolerance for the comparison.
Returns:
A boolean tensor indicating the bodies that have established contact within the last
:attr:`dt` seconds. Shape is (N, B), where N is the number of sensors and B is the
number of bodies in each sensor.
Raises:
RuntimeError: If the sensor is not configured to track contact time.
"""
# check if the sensor is configured to track contact time
if not self.cfg.track_air_time:
raise RuntimeError(
"The contact sensor is not configured to track contact time."
"Please enable the 'track_air_time' in the sensor configuration."
)
# check if the bodies are in contact
currently_in_contact = self.data.current_contact_time > 0.0
less_than_dt_in_contact = self.data.current_contact_time < (dt + abs_tol)
return currently_in_contact * less_than_dt_in_contact
[文档] def compute_first_air(self, dt: float, abs_tol: float = 1.0e-8) -> torch.Tensor:
"""Checks if bodies that have broken contact within the last :attr:`dt` seconds.
This function checks if the bodies have broken contact within the last :attr:`dt` seconds
by comparing the current air time with the given time period. If the air time is less
than the given time period, then the bodies are considered to not be in contact.
Note:
It assumes that :attr:`dt` is a factor of the sensor update time-step. In other words,
:math:`dt / dt_sensor = n`, where :math:`n` is a natural number. This is always true if
the sensor is updated by the physics or the environment stepping time-step and the sensor
is read by the environment stepping time-step.
Args:
dt: The time period since the contract is broken.
abs_tol: The absolute tolerance for the comparison.
Returns:
A boolean tensor indicating the bodies that have broken contact within the last :attr:`dt` seconds.
Shape is (N, B), where N is the number of sensors and B is the number of bodies in each sensor.
Raises:
RuntimeError: If the sensor is not configured to track contact time.
"""
# check if the sensor is configured to track contact time
if not self.cfg.track_air_time:
raise RuntimeError(
"The contact sensor is not configured to track contact time."
"Please enable the 'track_air_time' in the sensor configuration."
)
# check if the sensor is configured to track contact time
currently_detached = self.data.current_air_time > 0.0
less_than_dt_detached = self.data.current_air_time < (dt + abs_tol)
return currently_detached * less_than_dt_detached
"""
Implementation.
"""
def _initialize_impl(self):
super()._initialize_impl()
# create simulation view
self._physics_sim_view = physx.create_simulation_view(self._backend)
self._physics_sim_view.set_subspace_roots("/")
# check that only rigid bodies are selected
leaf_pattern = self.cfg.prim_path.rsplit("/", 1)[-1]
template_prim_path = self._parent_prims[0].GetPath().pathString
body_names = list()
for prim in sim_utils.find_matching_prims(template_prim_path + "/" + leaf_pattern):
# check if prim has contact reporter API
if prim.HasAPI(PhysxSchema.PhysxContactReportAPI):
prim_path = prim.GetPath().pathString
body_names.append(prim_path.rsplit("/", 1)[-1])
# check that there is at least one body with contact reporter API
if not body_names:
raise RuntimeError(
f"Sensor at path '{self.cfg.prim_path}' could not find any bodies with contact reporter API."
"\nHINT: Make sure to enable 'activate_contact_sensors' in the corresponding asset spawn configuration."
)
# construct regex expression for the body names
body_names_regex = r"(" + "|".join(body_names) + r")"
body_names_regex = f"{self.cfg.prim_path.rsplit('/', 1)[0]}/{body_names_regex}"
# convert regex expressions to glob expressions for PhysX
body_names_glob = body_names_regex.replace(".*", "*")
filter_prim_paths_glob = [expr.replace(".*", "*") for expr in self.cfg.filter_prim_paths_expr]
# create a rigid prim view for the sensor
self._body_physx_view = self._physics_sim_view.create_rigid_body_view(body_names_glob)
self._contact_physx_view = self._physics_sim_view.create_rigid_contact_view(
body_names_glob, filter_patterns=filter_prim_paths_glob
)
# resolve the true count of bodies
self._num_bodies = self.body_physx_view.count // self._num_envs
# check that contact reporter succeeded
if self._num_bodies != len(body_names):
raise RuntimeError(
"Failed to initialize contact reporter for specified bodies."
f"\n\tInput prim path : {self.cfg.prim_path}"
f"\n\tResolved prim paths: {body_names_regex}"
)
# prepare data buffers
self._data.net_forces_w = torch.zeros(self._num_envs, self._num_bodies, 3, device=self._device)
# optional buffers
# -- history of net forces
if self.cfg.history_length > 0:
self._data.net_forces_w_history = torch.zeros(
self._num_envs, self.cfg.history_length, self._num_bodies, 3, device=self._device
)
else:
self._data.net_forces_w_history = self._data.net_forces_w.unsqueeze(1)
# -- pose of sensor origins
if self.cfg.track_pose:
self._data.pos_w = torch.zeros(self._num_envs, self._num_bodies, 3, device=self._device)
self._data.quat_w = torch.zeros(self._num_envs, self._num_bodies, 4, device=self._device)
# -- air/contact time between contacts
if self.cfg.track_air_time:
self._data.last_air_time = torch.zeros(self._num_envs, self._num_bodies, device=self._device)
self._data.current_air_time = torch.zeros(self._num_envs, self._num_bodies, device=self._device)
self._data.last_contact_time = torch.zeros(self._num_envs, self._num_bodies, device=self._device)
self._data.current_contact_time = torch.zeros(self._num_envs, self._num_bodies, device=self._device)
# force matrix: (num_envs, num_bodies, num_filter_shapes, 3)
if len(self.cfg.filter_prim_paths_expr) != 0:
num_filters = self.contact_physx_view.filter_count
self._data.force_matrix_w = torch.zeros(
self._num_envs, self._num_bodies, num_filters, 3, device=self._device
)
def _update_buffers_impl(self, env_ids: Sequence[int]):
"""Fills the buffers of the sensor data."""
# default to all sensors
if len(env_ids) == self._num_envs:
env_ids = slice(None)
# obtain the contact forces
# TODO: We are handling the indexing ourself because of the shape; (N, B) vs expected (N * B).
# This isn't the most efficient way to do this, but it's the easiest to implement.
net_forces_w = self.contact_physx_view.get_net_contact_forces(dt=self._sim_physics_dt)
self._data.net_forces_w[env_ids, :, :] = net_forces_w.view(-1, self._num_bodies, 3)[env_ids]
# update contact force history
if self.cfg.history_length > 0:
self._data.net_forces_w_history[env_ids, 1:] = self._data.net_forces_w_history[env_ids, :-1].clone()
self._data.net_forces_w_history[env_ids, 0] = self._data.net_forces_w[env_ids]
# obtain the contact force matrix
if len(self.cfg.filter_prim_paths_expr) != 0:
# shape of the filtering matrix: (num_envs, num_bodies, num_filter_shapes, 3)
num_filters = self.contact_physx_view.filter_count
# acquire and shape the force matrix
force_matrix_w = self.contact_physx_view.get_contact_force_matrix(dt=self._sim_physics_dt)
force_matrix_w = force_matrix_w.view(-1, self._num_bodies, num_filters, 3)
self._data.force_matrix_w[env_ids] = force_matrix_w[env_ids]
# obtain the pose of the sensor origin
if self.cfg.track_pose:
pose = self.body_physx_view.get_transforms().view(-1, self._num_bodies, 7)[env_ids]
pose[..., 3:] = convert_quat(pose[..., 3:], to="wxyz")
self._data.pos_w[env_ids], self._data.quat_w[env_ids] = pose.split([3, 4], dim=-1)
# obtain the air time
if self.cfg.track_air_time:
# -- time elapsed since last update
# since this function is called every frame, we can use the difference to get the elapsed time
elapsed_time = self._timestamp[env_ids] - self._timestamp_last_update[env_ids]
# -- check contact state of bodies
is_contact = torch.norm(self._data.net_forces_w[env_ids, :, :], dim=-1) > self.cfg.force_threshold
is_first_contact = (self._data.current_air_time[env_ids] > 0) * is_contact
is_first_detached = (self._data.current_contact_time[env_ids] > 0) * ~is_contact
# -- update the last contact time if body has just become in contact
self._data.last_air_time[env_ids] = torch.where(
is_first_contact,
self._data.current_air_time[env_ids] + elapsed_time.unsqueeze(-1),
self._data.last_air_time[env_ids],
)
# -- increment time for bodies that are not in contact
self._data.current_air_time[env_ids] = torch.where(
~is_contact, self._data.current_air_time[env_ids] + elapsed_time.unsqueeze(-1), 0.0
)
# -- update the last contact time if body has just detached
self._data.last_contact_time[env_ids] = torch.where(
is_first_detached,
self._data.current_contact_time[env_ids] + elapsed_time.unsqueeze(-1),
self._data.last_contact_time[env_ids],
)
# -- increment time for bodies that are in contact
self._data.current_contact_time[env_ids] = torch.where(
is_contact, self._data.current_contact_time[env_ids] + elapsed_time.unsqueeze(-1), 0.0
)
def _set_debug_vis_impl(self, debug_vis: bool):
# set visibility of markers
# note: parent only deals with callbacks. not their visibility
if debug_vis:
# create markers if necessary for the first tome
if not hasattr(self, "contact_visualizer"):
self.contact_visualizer = VisualizationMarkers(self.cfg.visualizer_cfg)
# set their visibility to true
self.contact_visualizer.set_visibility(True)
else:
if hasattr(self, "contact_visualizer"):
self.contact_visualizer.set_visibility(False)
def _debug_vis_callback(self, event):
# safely return if view becomes invalid
# note: this invalidity happens because of isaac sim view callbacks
if self.body_physx_view is None:
return
# marker indices
# 0: contact, 1: no contact
net_contact_force_w = torch.norm(self._data.net_forces_w, dim=-1)
marker_indices = torch.where(net_contact_force_w > self.cfg.force_threshold, 0, 1)
# check if prim is visualized
if self.cfg.track_pose:
frame_origins: torch.Tensor = self._data.pos_w
else:
pose = self.body_physx_view.get_transforms()
frame_origins = pose.view(-1, self._num_bodies, 7)[:, :, :3]
# visualize
self.contact_visualizer.visualize(frame_origins.view(-1, 3), marker_indices=marker_indices.view(-1))
"""
Internal simulation callbacks.
"""
def _invalidate_initialize_callback(self, event):
"""Invalidates the scene elements."""
# call parent
super()._invalidate_initialize_callback(event)
# set all existing views to None to invalidate them
self._physics_sim_view = None
self._body_physx_view = None
self._contact_physx_view = None