omni.isaac.lab.sensors.contact_sensor.contact_sensor 源代码

# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause

# Ignore optional memory usage warning globally
# pyright: reportOptionalSubscript=false

from __future__ import annotations

import torch
from collections.abc import Sequence
from typing import TYPE_CHECKING

import omni.physics.tensors.impl.api as physx
from pxr import PhysxSchema

import omni.isaac.lab.sim as sim_utils
import omni.isaac.lab.utils.string as string_utils
from omni.isaac.lab.markers import VisualizationMarkers
from omni.isaac.lab.utils.math import convert_quat

from ..sensor_base import SensorBase
from .contact_sensor_data import ContactSensorData

if TYPE_CHECKING:
    from .contact_sensor_cfg import ContactSensorCfg


[文档]class ContactSensor(SensorBase): """A contact reporting sensor. The contact sensor reports the normal contact forces on a rigid body in the world frame. It relies on the `PhysX ContactReporter`_ API to be activated on the rigid bodies. To enable the contact reporter on a rigid body, please make sure to enable the :attr:`omni.isaac.lab.sim.spawner.RigidObjectSpawnerCfg.activate_contact_sensors` on your asset spawner configuration. This will enable the contact reporter on all the rigid bodies in the asset. The sensor can be configured to report the contact forces on a set of bodies with a given filter pattern using the :attr:`ContactSensorCfg.filter_prim_paths_expr`. This is useful when you want to report the contact forces between the sensor bodies and a specific set of bodies in the scene. The data can be accessed using the :attr:`ContactSensorData.force_matrix_w`. Please check the documentation on `RigidContactView`_ for more details. The reporting of the filtered contact forces is only possible as one-to-many. This means that only one sensor body in an environment can be filtered against multiple bodies in that environment. If you need to filter multiple sensor bodies against multiple bodies, you need to create separate sensors for each sensor body. As an example, suppose you want to report the contact forces for all the feet of a robot against an object exclusively. In that case, setting the :attr:`ContactSensorCfg.prim_path` and :attr:`ContactSensorCfg.filter_prim_paths_expr` with ``{ENV_REGEX_NS}/Robot/.*_FOOT`` and ``{ENV_REGEX_NS}/Object`` respectively will not work. Instead, you need to create a separate sensor for each foot and filter it against the object. .. _PhysX ContactReporter: https://docs.omniverse.nvidia.com/kit/docs/omni_usd_schema_physics/104.2/class_physx_schema_physx_contact_report_a_p_i.html .. _RigidContactView: https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.isaac.core/docs/index.html#omni.isaac.core.prims.RigidContactView """ cfg: ContactSensorCfg """The configuration parameters."""
[文档] def __init__(self, cfg: ContactSensorCfg): """Initializes the contact sensor object. Args: cfg: The configuration parameters. """ # initialize base class super().__init__(cfg) # Create empty variables for storing output data self._data: ContactSensorData = ContactSensorData() # initialize self._body_physx_view for running in extension mode self._body_physx_view = None
def __str__(self) -> str: """Returns: A string containing information about the instance.""" return ( f"Contact sensor @ '{self.cfg.prim_path}': \n" f"\tview type : {self.body_physx_view.__class__}\n" f"\tupdate period (s) : {self.cfg.update_period}\n" f"\tnumber of bodies : {self.num_bodies}\n" f"\tbody names : {self.body_names}\n" ) """ Properties """ @property def num_instances(self) -> int: return self.body_physx_view.count @property def data(self) -> ContactSensorData: # update sensors if needed self._update_outdated_buffers() # return the data return self._data @property def num_bodies(self) -> int: """Number of bodies with contact sensors attached.""" return self._num_bodies @property def body_names(self) -> list[str]: """Ordered names of bodies with contact sensors attached.""" prim_paths = self.body_physx_view.prim_paths[: self.num_bodies] return [path.split("/")[-1] for path in prim_paths] @property def body_physx_view(self) -> physx.RigidBodyView: """View for the rigid bodies captured (PhysX). Note: Use this view with caution. It requires handling of tensors in a specific way. """ return self._body_physx_view @property def contact_physx_view(self) -> physx.RigidContactView: """Contact reporter view for the bodies (PhysX). Note: Use this view with caution. It requires handling of tensors in a specific way. """ return self._contact_physx_view """ Operations """
[文档] def reset(self, env_ids: Sequence[int] | None = None): # reset the timers and counters super().reset(env_ids) # resolve None if env_ids is None: env_ids = slice(None) # reset accumulative data buffers self._data.net_forces_w[env_ids] = 0.0 self._data.net_forces_w_history[env_ids] = 0.0 if self.cfg.history_length > 0: self._data.net_forces_w_history[env_ids] = 0.0 # reset force matrix if len(self.cfg.filter_prim_paths_expr) != 0: self._data.force_matrix_w[env_ids] = 0.0 # reset the current air time if self.cfg.track_air_time: self._data.current_air_time[env_ids] = 0.0 self._data.last_air_time[env_ids] = 0.0 self._data.current_contact_time[env_ids] = 0.0 self._data.last_contact_time[env_ids] = 0.0
[文档] def find_bodies(self, name_keys: str | Sequence[str], preserve_order: bool = False) -> tuple[list[int], list[str]]: """Find bodies in the articulation based on the name keys. Args: name_keys: A regular expression or a list of regular expressions to match the body names. preserve_order: Whether to preserve the order of the name keys in the output. Defaults to False. Returns: A tuple of lists containing the body indices and names. """ return string_utils.resolve_matching_names(name_keys, self.body_names, preserve_order)
[文档] def compute_first_contact(self, dt: float, abs_tol: float = 1.0e-8) -> torch.Tensor: """Checks if bodies that have established contact within the last :attr:`dt` seconds. This function checks if the bodies have established contact within the last :attr:`dt` seconds by comparing the current contact time with the given time period. If the contact time is less than the given time period, then the bodies are considered to be in contact. Note: The function assumes that :attr:`dt` is a factor of the sensor update time-step. In other words :math:`dt / dt_sensor = n`, where :math:`n` is a natural number. This is always true if the sensor is updated by the physics or the environment stepping time-step and the sensor is read by the environment stepping time-step. Args: dt: The time period since the contact was established. abs_tol: The absolute tolerance for the comparison. Returns: A boolean tensor indicating the bodies that have established contact within the last :attr:`dt` seconds. Shape is (N, B), where N is the number of sensors and B is the number of bodies in each sensor. Raises: RuntimeError: If the sensor is not configured to track contact time. """ # check if the sensor is configured to track contact time if not self.cfg.track_air_time: raise RuntimeError( "The contact sensor is not configured to track contact time." "Please enable the 'track_air_time' in the sensor configuration." ) # check if the bodies are in contact currently_in_contact = self.data.current_contact_time > 0.0 less_than_dt_in_contact = self.data.current_contact_time < (dt + abs_tol) return currently_in_contact * less_than_dt_in_contact
[文档] def compute_first_air(self, dt: float, abs_tol: float = 1.0e-8) -> torch.Tensor: """Checks if bodies that have broken contact within the last :attr:`dt` seconds. This function checks if the bodies have broken contact within the last :attr:`dt` seconds by comparing the current air time with the given time period. If the air time is less than the given time period, then the bodies are considered to not be in contact. Note: It assumes that :attr:`dt` is a factor of the sensor update time-step. In other words, :math:`dt / dt_sensor = n`, where :math:`n` is a natural number. This is always true if the sensor is updated by the physics or the environment stepping time-step and the sensor is read by the environment stepping time-step. Args: dt: The time period since the contract is broken. abs_tol: The absolute tolerance for the comparison. Returns: A boolean tensor indicating the bodies that have broken contact within the last :attr:`dt` seconds. Shape is (N, B), where N is the number of sensors and B is the number of bodies in each sensor. Raises: RuntimeError: If the sensor is not configured to track contact time. """ # check if the sensor is configured to track contact time if not self.cfg.track_air_time: raise RuntimeError( "The contact sensor is not configured to track contact time." "Please enable the 'track_air_time' in the sensor configuration." ) # check if the sensor is configured to track contact time currently_detached = self.data.current_air_time > 0.0 less_than_dt_detached = self.data.current_air_time < (dt + abs_tol) return currently_detached * less_than_dt_detached
""" Implementation. """ def _initialize_impl(self): super()._initialize_impl() # create simulation view self._physics_sim_view = physx.create_simulation_view(self._backend) self._physics_sim_view.set_subspace_roots("/") # check that only rigid bodies are selected leaf_pattern = self.cfg.prim_path.rsplit("/", 1)[-1] template_prim_path = self._parent_prims[0].GetPath().pathString body_names = list() for prim in sim_utils.find_matching_prims(template_prim_path + "/" + leaf_pattern): # check if prim has contact reporter API if prim.HasAPI(PhysxSchema.PhysxContactReportAPI): prim_path = prim.GetPath().pathString body_names.append(prim_path.rsplit("/", 1)[-1]) # check that there is at least one body with contact reporter API if not body_names: raise RuntimeError( f"Sensor at path '{self.cfg.prim_path}' could not find any bodies with contact reporter API." "\nHINT: Make sure to enable 'activate_contact_sensors' in the corresponding asset spawn configuration." ) # construct regex expression for the body names body_names_regex = r"(" + "|".join(body_names) + r")" body_names_regex = f"{self.cfg.prim_path.rsplit('/', 1)[0]}/{body_names_regex}" # convert regex expressions to glob expressions for PhysX body_names_glob = body_names_regex.replace(".*", "*") filter_prim_paths_glob = [expr.replace(".*", "*") for expr in self.cfg.filter_prim_paths_expr] # create a rigid prim view for the sensor self._body_physx_view = self._physics_sim_view.create_rigid_body_view(body_names_glob) self._contact_physx_view = self._physics_sim_view.create_rigid_contact_view( body_names_glob, filter_patterns=filter_prim_paths_glob ) # resolve the true count of bodies self._num_bodies = self.body_physx_view.count // self._num_envs # check that contact reporter succeeded if self._num_bodies != len(body_names): raise RuntimeError( "Failed to initialize contact reporter for specified bodies." f"\n\tInput prim path : {self.cfg.prim_path}" f"\n\tResolved prim paths: {body_names_regex}" ) # prepare data buffers self._data.net_forces_w = torch.zeros(self._num_envs, self._num_bodies, 3, device=self._device) # optional buffers # -- history of net forces if self.cfg.history_length > 0: self._data.net_forces_w_history = torch.zeros( self._num_envs, self.cfg.history_length, self._num_bodies, 3, device=self._device ) else: self._data.net_forces_w_history = self._data.net_forces_w.unsqueeze(1) # -- pose of sensor origins if self.cfg.track_pose: self._data.pos_w = torch.zeros(self._num_envs, self._num_bodies, 3, device=self._device) self._data.quat_w = torch.zeros(self._num_envs, self._num_bodies, 4, device=self._device) # -- air/contact time between contacts if self.cfg.track_air_time: self._data.last_air_time = torch.zeros(self._num_envs, self._num_bodies, device=self._device) self._data.current_air_time = torch.zeros(self._num_envs, self._num_bodies, device=self._device) self._data.last_contact_time = torch.zeros(self._num_envs, self._num_bodies, device=self._device) self._data.current_contact_time = torch.zeros(self._num_envs, self._num_bodies, device=self._device) # force matrix: (num_envs, num_bodies, num_filter_shapes, 3) if len(self.cfg.filter_prim_paths_expr) != 0: num_filters = self.contact_physx_view.filter_count self._data.force_matrix_w = torch.zeros( self._num_envs, self._num_bodies, num_filters, 3, device=self._device ) def _update_buffers_impl(self, env_ids: Sequence[int]): """Fills the buffers of the sensor data.""" # default to all sensors if len(env_ids) == self._num_envs: env_ids = slice(None) # obtain the contact forces # TODO: We are handling the indexing ourself because of the shape; (N, B) vs expected (N * B). # This isn't the most efficient way to do this, but it's the easiest to implement. net_forces_w = self.contact_physx_view.get_net_contact_forces(dt=self._sim_physics_dt) self._data.net_forces_w[env_ids, :, :] = net_forces_w.view(-1, self._num_bodies, 3)[env_ids] # update contact force history if self.cfg.history_length > 0: self._data.net_forces_w_history[env_ids, 1:] = self._data.net_forces_w_history[env_ids, :-1].clone() self._data.net_forces_w_history[env_ids, 0] = self._data.net_forces_w[env_ids] # obtain the contact force matrix if len(self.cfg.filter_prim_paths_expr) != 0: # shape of the filtering matrix: (num_envs, num_bodies, num_filter_shapes, 3) num_filters = self.contact_physx_view.filter_count # acquire and shape the force matrix force_matrix_w = self.contact_physx_view.get_contact_force_matrix(dt=self._sim_physics_dt) force_matrix_w = force_matrix_w.view(-1, self._num_bodies, num_filters, 3) self._data.force_matrix_w[env_ids] = force_matrix_w[env_ids] # obtain the pose of the sensor origin if self.cfg.track_pose: pose = self.body_physx_view.get_transforms().view(-1, self._num_bodies, 7)[env_ids] pose[..., 3:] = convert_quat(pose[..., 3:], to="wxyz") self._data.pos_w[env_ids], self._data.quat_w[env_ids] = pose.split([3, 4], dim=-1) # obtain the air time if self.cfg.track_air_time: # -- time elapsed since last update # since this function is called every frame, we can use the difference to get the elapsed time elapsed_time = self._timestamp[env_ids] - self._timestamp_last_update[env_ids] # -- check contact state of bodies is_contact = torch.norm(self._data.net_forces_w[env_ids, :, :], dim=-1) > self.cfg.force_threshold is_first_contact = (self._data.current_air_time[env_ids] > 0) * is_contact is_first_detached = (self._data.current_contact_time[env_ids] > 0) * ~is_contact # -- update the last contact time if body has just become in contact self._data.last_air_time[env_ids] = torch.where( is_first_contact, self._data.current_air_time[env_ids] + elapsed_time.unsqueeze(-1), self._data.last_air_time[env_ids], ) # -- increment time for bodies that are not in contact self._data.current_air_time[env_ids] = torch.where( ~is_contact, self._data.current_air_time[env_ids] + elapsed_time.unsqueeze(-1), 0.0 ) # -- update the last contact time if body has just detached self._data.last_contact_time[env_ids] = torch.where( is_first_detached, self._data.current_contact_time[env_ids] + elapsed_time.unsqueeze(-1), self._data.last_contact_time[env_ids], ) # -- increment time for bodies that are in contact self._data.current_contact_time[env_ids] = torch.where( is_contact, self._data.current_contact_time[env_ids] + elapsed_time.unsqueeze(-1), 0.0 ) def _set_debug_vis_impl(self, debug_vis: bool): # set visibility of markers # note: parent only deals with callbacks. not their visibility if debug_vis: # create markers if necessary for the first tome if not hasattr(self, "contact_visualizer"): self.contact_visualizer = VisualizationMarkers(self.cfg.visualizer_cfg) # set their visibility to true self.contact_visualizer.set_visibility(True) else: if hasattr(self, "contact_visualizer"): self.contact_visualizer.set_visibility(False) def _debug_vis_callback(self, event): # safely return if view becomes invalid # note: this invalidity happens because of isaac sim view callbacks if self.body_physx_view is None: return # marker indices # 0: contact, 1: no contact net_contact_force_w = torch.norm(self._data.net_forces_w, dim=-1) marker_indices = torch.where(net_contact_force_w > self.cfg.force_threshold, 0, 1) # check if prim is visualized if self.cfg.track_pose: frame_origins: torch.Tensor = self._data.pos_w else: pose = self.body_physx_view.get_transforms() frame_origins = pose.view(-1, self._num_bodies, 7)[:, :, :3] # visualize self.contact_visualizer.visualize(frame_origins.view(-1, 3), marker_indices=marker_indices.view(-1)) """ Internal simulation callbacks. """ def _invalidate_initialize_callback(self, event): """Invalidates the scene elements.""" # call parent super()._invalidate_initialize_callback(event) # set all existing views to None to invalidate them self._physics_sim_view = None self._body_physx_view = None self._contact_physx_view = None