# Copyright (c) 2022-2024, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
"""Command manager for generating and updating commands."""
from __future__ import annotations
import inspect
import torch
import weakref
from abc import abstractmethod
from collections.abc import Sequence
from prettytable import PrettyTable
from typing import TYPE_CHECKING
import omni.kit.app
from .manager_base import ManagerBase, ManagerTermBase
from .manager_term_cfg import CommandTermCfg
if TYPE_CHECKING:
from omni.isaac.lab.envs import ManagerBasedRLEnv
[文档]class CommandTerm(ManagerTermBase):
"""The base class for implementing a command term.
A command term is used to generate commands for goal-conditioned tasks. For example,
in the case of a goal-conditioned navigation task, the command term can be used to
generate a target position for the robot to navigate to.
It implements a resampling mechanism that allows the command to be resampled at a fixed
frequency. The resampling frequency can be specified in the configuration object.
Additionally, it is possible to assign a visualization function to the command term
that can be used to visualize the command in the simulator.
"""
def __init__(self, cfg: CommandTermCfg, env: ManagerBasedRLEnv):
"""Initialize the command generator class.
Args:
cfg: The configuration parameters for the command generator.
env: The environment object.
"""
super().__init__(cfg, env)
# create buffers to store the command
# -- metrics that can be used for logging
self.metrics = dict()
# -- time left before resampling
self.time_left = torch.zeros(self.num_envs, device=self.device)
# -- counter for the number of times the command has been resampled within the current episode
self.command_counter = torch.zeros(self.num_envs, device=self.device, dtype=torch.long)
# add handle for debug visualization (this is set to a valid handle inside set_debug_vis)
self._debug_vis_handle = None
# set initial state of debug visualization
self.set_debug_vis(self.cfg.debug_vis)
def __del__(self):
"""Unsubscribe from the callbacks."""
if self._debug_vis_handle:
self._debug_vis_handle.unsubscribe()
self._debug_vis_handle = None
"""
Properties
"""
@property
@abstractmethod
def command(self) -> torch.Tensor:
"""The command tensor. Shape is (num_envs, command_dim)."""
raise NotImplementedError
@property
def has_debug_vis_implementation(self) -> bool:
"""Whether the command generator has a debug visualization implemented."""
# check if function raises NotImplementedError
source_code = inspect.getsource(self._set_debug_vis_impl)
return "NotImplementedError" not in source_code
"""
Operations.
"""
[文档] def set_debug_vis(self, debug_vis: bool) -> bool:
"""Sets whether to visualize the command data.
Args:
debug_vis: Whether to visualize the command data.
Returns:
Whether the debug visualization was successfully set. False if the command
generator does not support debug visualization.
"""
# check if debug visualization is supported
if not self.has_debug_vis_implementation:
return False
# toggle debug visualization objects
self._set_debug_vis_impl(debug_vis)
# toggle debug visualization handles
if debug_vis:
# create a subscriber for the post update event if it doesn't exist
if self._debug_vis_handle is None:
app_interface = omni.kit.app.get_app_interface()
self._debug_vis_handle = app_interface.get_post_update_event_stream().create_subscription_to_pop(
lambda event, obj=weakref.proxy(self): obj._debug_vis_callback(event)
)
else:
# remove the subscriber if it exists
if self._debug_vis_handle is not None:
self._debug_vis_handle.unsubscribe()
self._debug_vis_handle = None
# return success
return True
[文档] def reset(self, env_ids: Sequence[int] | None = None) -> dict[str, float]:
"""Reset the command generator and log metrics.
This function resets the command counter and resamples the command. It should be called
at the beginning of each episode.
Args:
env_ids: The list of environment IDs to reset. Defaults to None.
Returns:
A dictionary containing the information to log under the "{name}" key.
"""
# resolve the environment IDs
if env_ids is None:
env_ids = slice(None)
# set the command counter to zero
self.command_counter[env_ids] = 0
# resample the command
self._resample(env_ids)
# add logging metrics
extras = {}
for metric_name, metric_value in self.metrics.items():
# compute the mean metric value
extras[metric_name] = torch.mean(metric_value[env_ids]).item()
# reset the metric value
metric_value[env_ids] = 0.0
return extras
[文档] def compute(self, dt: float):
"""Compute the command.
Args:
dt: The time step passed since the last call to compute.
"""
# update the metrics based on current state
self._update_metrics()
# reduce the time left before resampling
self.time_left -= dt
# resample the command if necessary
resample_env_ids = (self.time_left <= 0.0).nonzero().flatten()
if len(resample_env_ids) > 0:
self._resample(resample_env_ids)
# update the command
self._update_command()
"""
Helper functions.
"""
def _resample(self, env_ids: Sequence[int]):
"""Resample the command.
This function resamples the command and time for which the command is applied for the
specified environment indices.
Args:
env_ids: The list of environment IDs to resample.
"""
# resample the time left before resampling
if len(env_ids) != 0:
self.time_left[env_ids] = self.time_left[env_ids].uniform_(*self.cfg.resampling_time_range)
# increment the command counter
self.command_counter[env_ids] += 1
# resample the command
self._resample_command(env_ids)
"""
Implementation specific functions.
"""
@abstractmethod
def _update_metrics(self):
"""Update the metrics based on the current state."""
raise NotImplementedError
@abstractmethod
def _resample_command(self, env_ids: Sequence[int]):
"""Resample the command for the specified environments."""
raise NotImplementedError
@abstractmethod
def _update_command(self):
"""Update the command based on the current state."""
raise NotImplementedError
def _set_debug_vis_impl(self, debug_vis: bool):
"""Set debug visualization into visualization objects.
This function is responsible for creating the visualization objects if they don't exist
and input ``debug_vis`` is True. If the visualization objects exist, the function should
set their visibility into the stage.
"""
raise NotImplementedError(f"Debug visualization is not implemented for {self.__class__.__name__}.")
def _debug_vis_callback(self, event):
"""Callback for debug visualization.
This function calls the visualization objects and sets the data to visualize into them.
"""
raise NotImplementedError(f"Debug visualization is not implemented for {self.__class__.__name__}.")
[文档]class CommandManager(ManagerBase):
"""Manager for generating commands.
The command manager is used to generate commands for an agent to execute. It makes it convenient to switch
between different command generation strategies within the same environment. For instance, in an environment
consisting of a quadrupedal robot, the command to it could be a velocity command or position command.
By keeping the command generation logic separate from the environment, it is easy to switch between different
command generation strategies.
The command terms are implemented as classes that inherit from the :class:`CommandTerm` class.
Each command generator term should also have a corresponding configuration class that inherits from the
:class:`CommandTermCfg` class.
"""
_env: ManagerBasedRLEnv
"""The environment instance."""
[文档] def __init__(self, cfg: object, env: ManagerBasedRLEnv):
"""Initialize the command manager.
Args:
cfg: The configuration object or dictionary (``dict[str, CommandTermCfg]``).
env: The environment instance.
"""
# create buffers to parse and store terms
self._terms: dict[str, CommandTerm] = dict()
# call the base class constructor (this prepares the terms)
super().__init__(cfg, env)
# store the commands
self._commands = dict()
if self.cfg:
self.cfg.debug_vis = False
for term in self._terms.values():
self.cfg.debug_vis |= term.cfg.debug_vis
def __str__(self) -> str:
"""Returns: A string representation for the command manager."""
msg = f"<CommandManager> contains {len(self._terms.values())} active terms.\n"
# create table for term information
table = PrettyTable()
table.title = "Active Command Terms"
table.field_names = ["Index", "Name", "Type"]
# set alignment of table columns
table.align["Name"] = "l"
# add info on each term
for index, (name, term) in enumerate(self._terms.items()):
table.add_row([index, name, term.__class__.__name__])
# convert table to string
msg += table.get_string()
msg += "\n"
return msg
"""
Properties.
"""
@property
def active_terms(self) -> list[str]:
"""Name of active command terms."""
return list(self._terms.keys())
@property
def has_debug_vis_implementation(self) -> bool:
"""Whether the command terms have debug visualization implemented."""
# check if function raises NotImplementedError
has_debug_vis = False
for term in self._terms.values():
has_debug_vis |= term.has_debug_vis_implementation
return has_debug_vis
"""
Operations.
"""
[文档] def set_debug_vis(self, debug_vis: bool) -> bool:
"""Sets whether to visualize the command data.
Args:
debug_vis: Whether to visualize the command data.
Returns:
Whether the debug visualization was successfully set. False if the command
generator does not support debug visualization.
"""
for term in self._terms.values():
term.set_debug_vis(debug_vis)
[文档] def reset(self, env_ids: Sequence[int] | None = None) -> dict[str, torch.Tensor]:
"""Reset the command terms and log their metrics.
This function resets the command counter and resamples the command for each term. It should be called
at the beginning of each episode.
Args:
env_ids: The list of environment IDs to reset. Defaults to None.
Returns:
A dictionary containing the information to log under the "Metrics/{term_name}/{metric_name}" key.
"""
# resolve environment ids
if env_ids is None:
env_ids = slice(None)
# store information
extras = {}
for name, term in self._terms.items():
# reset the command term
metrics = term.reset(env_ids=env_ids)
# compute the mean metric value
for metric_name, metric_value in metrics.items():
extras[f"Metrics/{name}/{metric_name}"] = metric_value
# return logged information
return extras
[文档] def compute(self, dt: float):
"""Updates the commands.
This function calls each command term managed by the class.
Args:
dt: The time-step interval of the environment.
"""
# iterate over all the command terms
for term in self._terms.values():
# compute term's value
term.compute(dt)
[文档] def get_command(self, name: str) -> torch.Tensor:
"""Returns the command for the specified command term.
Args:
name: The name of the command term.
Returns:
The command tensor of the specified command term.
"""
return self._terms[name].command
[文档] def get_term(self, name: str) -> CommandTerm:
"""Returns the command term with the specified name.
Args:
name: The name of the command term.
Returns:
The command term with the specified name.
"""
return self._terms[name]
"""
Helper functions.
"""
def _prepare_terms(self):
# check if config is dict already
if isinstance(self.cfg, dict):
cfg_items = self.cfg.items()
else:
cfg_items = self.cfg.__dict__.items()
# iterate over all the terms
for term_name, term_cfg in cfg_items:
# check for non config
if term_cfg is None:
continue
# check for valid config type
if not isinstance(term_cfg, CommandTermCfg):
raise TypeError(
f"Configuration for the term '{term_name}' is not of type CommandTermCfg."
f" Received: '{type(term_cfg)}'."
)
# create the action term
term = term_cfg.class_type(term_cfg, self._env)
# sanity check if term is valid type
if not isinstance(term, CommandTerm):
raise TypeError(f"Returned object for the term '{term_name}' is not of type CommandType.")
# add class to dict
self._terms[term_name] = term