# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
"""Common functions that can be used to enable reward functions.
The functions can be passed to the :class:`omni.isaac.lab.managers.RewardTermCfg` object to include
the reward introduced by the function.
"""
from __future__ import annotations
import torch
from typing import TYPE_CHECKING
from omni.isaac.lab.assets import Articulation, RigidObject
from omni.isaac.lab.managers import SceneEntityCfg
from omni.isaac.lab.managers.manager_base import ManagerTermBase
from omni.isaac.lab.managers.manager_term_cfg import RewardTermCfg
from omni.isaac.lab.sensors import ContactSensor, RayCaster
if TYPE_CHECKING:
from omni.isaac.lab.envs import ManagerBasedRLEnv
"""
General.
"""
[文档]def is_alive(env: ManagerBasedRLEnv) -> torch.Tensor:
"""Reward for being alive."""
return (~env.termination_manager.terminated).float()
[文档]def is_terminated(env: ManagerBasedRLEnv) -> torch.Tensor:
"""Penalize terminated episodes that don't correspond to episodic timeouts."""
return env.termination_manager.terminated.float()
[文档]class is_terminated_term(ManagerTermBase):
"""Penalize termination for specific terms that don't correspond to episodic timeouts.
The parameters are as follows:
* attr:`term_keys`: The termination terms to penalize. This can be a string, a list of strings
or regular expressions. Default is ".*" which penalizes all terminations.
The reward is computed as the sum of the termination terms that are not episodic timeouts.
This means that the reward is 0 if the episode is terminated due to an episodic timeout. Otherwise,
if two termination terms are active, the reward is 2.
"""
[文档] def __init__(self, cfg: RewardTermCfg, env: ManagerBasedRLEnv):
# initialize the base class
super().__init__(cfg, env)
# find and store the termination terms
term_keys = cfg.params.get("term_keys", ".*")
self._term_names = env.termination_manager.find_terms(term_keys)
def __call__(self, env: ManagerBasedRLEnv, term_keys: str | list[str] = ".*") -> torch.Tensor:
# Return the unweighted reward for the termination terms
reset_buf = torch.zeros(env.num_envs, device=env.device)
for term in self._term_names:
# Sums over terminations term values to account for multiple terminations in the same step
reset_buf += env.termination_manager.get_term(term)
return (reset_buf * (~env.termination_manager.time_outs)).float()
"""
Root penalties.
"""
[文档]def lin_vel_z_l2(env: ManagerBasedRLEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor:
"""Penalize z-axis base linear velocity using L2 squared kernel."""
# extract the used quantities (to enable type-hinting)
asset: RigidObject = env.scene[asset_cfg.name]
return torch.square(asset.data.root_com_lin_vel_b[:, 2])
[文档]def ang_vel_xy_l2(env: ManagerBasedRLEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor:
"""Penalize xy-axis base angular velocity using L2 squared kernel."""
# extract the used quantities (to enable type-hinting)
asset: RigidObject = env.scene[asset_cfg.name]
return torch.sum(torch.square(asset.data.root_com_ang_vel_b[:, :2]), dim=1)
[文档]def flat_orientation_l2(env: ManagerBasedRLEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor:
"""Penalize non-flat base orientation using L2 squared kernel.
This is computed by penalizing the xy-components of the projected gravity vector.
"""
# extract the used quantities (to enable type-hinting)
asset: RigidObject = env.scene[asset_cfg.name]
return torch.sum(torch.square(asset.data.projected_gravity_b[:, :2]), dim=1)
[文档]def base_height_l2(
env: ManagerBasedRLEnv,
target_height: float,
asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"),
sensor_cfg: SceneEntityCfg | None = None,
) -> torch.Tensor:
"""Penalize asset height from its target using L2 squared kernel.
Note:
For flat terrain, target height is in the world frame. For rough terrain,
sensor readings can adjust the target height to account for the terrain.
"""
# extract the used quantities (to enable type-hinting)
asset: RigidObject = env.scene[asset_cfg.name]
if sensor_cfg is not None:
sensor: RayCaster = env.scene[sensor_cfg.name]
# Adjust the target height using the sensor data
adjusted_target_height = target_height + sensor.data.pos_w[:, 2]
else:
# Use the provided target height directly for flat terrain
adjusted_target_height = target_height
# Compute the L2 squared penalty
return torch.square(asset.data.root_link_pos_w[:, 2] - adjusted_target_height)
[文档]def body_lin_acc_l2(env: ManagerBasedRLEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor:
"""Penalize the linear acceleration of bodies using L2-kernel."""
asset: Articulation = env.scene[asset_cfg.name]
return torch.sum(torch.norm(asset.data.body_lin_acc_w[:, asset_cfg.body_ids, :], dim=-1), dim=1)
"""
Joint penalties.
"""
[文档]def joint_torques_l2(env: ManagerBasedRLEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor:
"""Penalize joint torques applied on the articulation using L2 squared kernel.
NOTE: Only the joints configured in :attr:`asset_cfg.joint_ids` will have their joint torques contribute to the term.
"""
# extract the used quantities (to enable type-hinting)
asset: Articulation = env.scene[asset_cfg.name]
return torch.sum(torch.square(asset.data.applied_torque[:, asset_cfg.joint_ids]), dim=1)
[文档]def joint_vel_l1(env: ManagerBasedRLEnv, asset_cfg: SceneEntityCfg) -> torch.Tensor:
"""Penalize joint velocities on the articulation using an L1-kernel."""
# extract the used quantities (to enable type-hinting)
asset: Articulation = env.scene[asset_cfg.name]
return torch.sum(torch.abs(asset.data.joint_vel[:, asset_cfg.joint_ids]), dim=1)
[文档]def joint_vel_l2(env: ManagerBasedRLEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor:
"""Penalize joint velocities on the articulation using L2 squared kernel.
NOTE: Only the joints configured in :attr:`asset_cfg.joint_ids` will have their joint velocities contribute to the term.
"""
# extract the used quantities (to enable type-hinting)
asset: Articulation = env.scene[asset_cfg.name]
return torch.sum(torch.square(asset.data.joint_vel[:, asset_cfg.joint_ids]), dim=1)
[文档]def joint_acc_l2(env: ManagerBasedRLEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor:
"""Penalize joint accelerations on the articulation using L2 squared kernel.
NOTE: Only the joints configured in :attr:`asset_cfg.joint_ids` will have their joint accelerations contribute to the term.
"""
# extract the used quantities (to enable type-hinting)
asset: Articulation = env.scene[asset_cfg.name]
return torch.sum(torch.square(asset.data.joint_acc[:, asset_cfg.joint_ids]), dim=1)
[文档]def joint_deviation_l1(env: ManagerBasedRLEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor:
"""Penalize joint positions that deviate from the default one."""
# extract the used quantities (to enable type-hinting)
asset: Articulation = env.scene[asset_cfg.name]
# compute out of limits constraints
angle = asset.data.joint_pos[:, asset_cfg.joint_ids] - asset.data.default_joint_pos[:, asset_cfg.joint_ids]
return torch.sum(torch.abs(angle), dim=1)
[文档]def joint_pos_limits(env: ManagerBasedRLEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor:
"""Penalize joint positions if they cross the soft limits.
This is computed as a sum of the absolute value of the difference between the joint position and the soft limits.
"""
# extract the used quantities (to enable type-hinting)
asset: Articulation = env.scene[asset_cfg.name]
# compute out of limits constraints
out_of_limits = -(
asset.data.joint_pos[:, asset_cfg.joint_ids] - asset.data.soft_joint_pos_limits[:, asset_cfg.joint_ids, 0]
).clip(max=0.0)
out_of_limits += (
asset.data.joint_pos[:, asset_cfg.joint_ids] - asset.data.soft_joint_pos_limits[:, asset_cfg.joint_ids, 1]
).clip(min=0.0)
return torch.sum(out_of_limits, dim=1)
[文档]def joint_vel_limits(
env: ManagerBasedRLEnv, soft_ratio: float, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")
) -> torch.Tensor:
"""Penalize joint velocities if they cross the soft limits.
This is computed as a sum of the absolute value of the difference between the joint velocity and the soft limits.
Args:
soft_ratio: The ratio of the soft limits to be used.
"""
# extract the used quantities (to enable type-hinting)
asset: Articulation = env.scene[asset_cfg.name]
# compute out of limits constraints
out_of_limits = (
torch.abs(asset.data.joint_vel[:, asset_cfg.joint_ids])
- asset.data.soft_joint_vel_limits[:, asset_cfg.joint_ids] * soft_ratio
)
# clip to max error = 1 rad/s per joint to avoid huge penalties
out_of_limits = out_of_limits.clip_(min=0.0, max=1.0)
return torch.sum(out_of_limits, dim=1)
"""
Action penalties.
"""
[文档]def applied_torque_limits(env: ManagerBasedRLEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor:
"""Penalize applied torques if they cross the limits.
This is computed as a sum of the absolute value of the difference between the applied torques and the limits.
.. caution::
Currently, this only works for explicit actuators since we manually compute the applied torques.
For implicit actuators, we currently cannot retrieve the applied torques from the physics engine.
"""
# extract the used quantities (to enable type-hinting)
asset: Articulation = env.scene[asset_cfg.name]
# compute out of limits constraints
# TODO: We need to fix this to support implicit joints.
out_of_limits = torch.abs(
asset.data.applied_torque[:, asset_cfg.joint_ids] - asset.data.computed_torque[:, asset_cfg.joint_ids]
)
return torch.sum(out_of_limits, dim=1)
[文档]def action_rate_l2(env: ManagerBasedRLEnv) -> torch.Tensor:
"""Penalize the rate of change of the actions using L2 squared kernel."""
return torch.sum(torch.square(env.action_manager.action - env.action_manager.prev_action), dim=1)
[文档]def action_l2(env: ManagerBasedRLEnv) -> torch.Tensor:
"""Penalize the actions using L2 squared kernel."""
return torch.sum(torch.square(env.action_manager.action), dim=1)
"""
Contact sensor.
"""
"""
Velocity-tracking rewards.
"""
[文档]def track_lin_vel_xy_exp(
env: ManagerBasedRLEnv, std: float, command_name: str, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")
) -> torch.Tensor:
"""Reward tracking of linear velocity commands (xy axes) using exponential kernel."""
# extract the used quantities (to enable type-hinting)
asset: RigidObject = env.scene[asset_cfg.name]
# compute the error
lin_vel_error = torch.sum(
torch.square(env.command_manager.get_command(command_name)[:, :2] - asset.data.root_com_lin_vel_b[:, :2]),
dim=1,
)
return torch.exp(-lin_vel_error / std**2)
[文档]def track_ang_vel_z_exp(
env: ManagerBasedRLEnv, std: float, command_name: str, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")
) -> torch.Tensor:
"""Reward tracking of angular velocity commands (yaw) using exponential kernel."""
# extract the used quantities (to enable type-hinting)
asset: RigidObject = env.scene[asset_cfg.name]
# compute the error
ang_vel_error = torch.square(
env.command_manager.get_command(command_name)[:, 2] - asset.data.root_com_ang_vel_b[:, 2]
)
return torch.exp(-ang_vel_error / std**2)