omni.isaac.lab.envs.mdp.events 源代码

# Copyright (c) 2022-2024, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause

"""Common functions that can be used to enable different events.

Events include anything related to altering the simulation state. This includes changing the physics
materials, applying external forces, and resetting the state of the asset.

The functions can be passed to the :class:`omni.isaac.lab.managers.EventTermCfg` object to enable
the event introduced by the function.
"""

from __future__ import annotations

import torch
from typing import TYPE_CHECKING, Literal

import carb
import omni.physics.tensors.impl.api as physx

import omni.isaac.lab.sim as sim_utils
import omni.isaac.lab.utils.math as math_utils
from omni.isaac.lab.actuators import ImplicitActuator
from omni.isaac.lab.assets import Articulation, DeformableObject, RigidObject
from omni.isaac.lab.managers import EventTermCfg, ManagerTermBase, SceneEntityCfg
from omni.isaac.lab.terrains import TerrainImporter

if TYPE_CHECKING:
    from omni.isaac.lab.envs import ManagerBasedEnv


[文档]class randomize_rigid_body_material(ManagerTermBase): """Randomize the physics materials on all geometries of the asset. This function creates a set of physics materials with random static friction, dynamic friction, and restitution values. The number of materials is specified by ``num_buckets``. The materials are generated by sampling uniform random values from the given ranges. The material properties are then assigned to the geometries of the asset. The assignment is done by creating a random integer tensor of shape (num_instances, max_num_shapes) where ``num_instances`` is the number of assets spawned and ``max_num_shapes`` is the maximum number of shapes in the asset (over all bodies). The integer values are used as indices to select the material properties from the material buckets. If the flag ``make_consistent`` is set to ``True``, the dynamic friction is set to be less than or equal to the static friction. This obeys the physics constraint on friction values. However, it may not always be essential for the application. Thus, the flag is set to ``False`` by default. .. attention:: This function uses CPU tensors to assign the material properties. It is recommended to use this function only during the initialization of the environment. Otherwise, it may lead to a significant performance overhead. .. note:: PhysX only allows 64000 unique physics materials in the scene. If the number of materials exceeds this limit, the simulation will crash. Due to this reason, we sample the materials only once during initialization. Afterwards, these materials are randomly assigned to the geometries of the asset. """
[文档] def __init__(self, cfg: EventTermCfg, env: ManagerBasedEnv): """Initialize the term. Args: cfg: The configuration of the event term. env: The environment instance. Raises: ValueError: If the asset is not a RigidObject or an Articulation. """ super().__init__(cfg, env) # extract the used quantities (to enable type-hinting) self.asset_cfg: SceneEntityCfg = cfg.params["asset_cfg"] self.asset: RigidObject | Articulation = env.scene[self.asset_cfg.name] if not isinstance(self.asset, (RigidObject, Articulation)): raise ValueError( f"Randomization term 'randomize_rigid_body_material' not supported for asset: '{self.asset_cfg.name}'" f" with type: '{type(self.asset)}'." ) # obtain number of shapes per body (needed for indexing the material properties correctly) # note: this is a workaround since the Articulation does not provide a direct way to obtain the number of shapes # per body. We use the physics simulation view to obtain the number of shapes per body. if isinstance(self.asset, Articulation) and self.asset_cfg.body_ids != slice(None): self.num_shapes_per_body = [] for link_path in self.asset.root_physx_view.link_paths[0]: link_physx_view = self.asset._physics_sim_view.create_rigid_body_view(link_path) # type: ignore self.num_shapes_per_body.append(link_physx_view.max_shapes) # ensure the parsing is correct num_shapes = sum(self.num_shapes_per_body) expected_shapes = self.asset.root_physx_view.max_shapes if num_shapes != expected_shapes: raise ValueError( "Randomization term 'randomize_rigid_body_material' failed to parse the number of shapes per body." f" Expected total shapes: {expected_shapes}, but got: {num_shapes}." ) else: # in this case, we don't need to do special indexing self.num_shapes_per_body = None # obtain parameters for sampling friction and restitution values static_friction_range = cfg.params.get("static_friction_range", (1.0, 1.0)) dynamic_friction_range = cfg.params.get("dynamic_friction_range", (1.0, 1.0)) restitution_range = cfg.params.get("restitution_range", (0.0, 0.0)) num_buckets = int(cfg.params.get("num_buckets", 1)) # sample material properties from the given ranges # note: we only sample the materials once during initialization # afterwards these are randomly assigned to the geometries of the asset range_list = [static_friction_range, dynamic_friction_range, restitution_range] ranges = torch.tensor(range_list, device="cpu") self.material_buckets = math_utils.sample_uniform(ranges[:, 0], ranges[:, 1], (num_buckets, 3), device="cpu") # ensure dynamic friction is always less than static friction make_consistent = cfg.params.get("make_consistent", False) if make_consistent: self.material_buckets[:, 1] = torch.min(self.material_buckets[:, 0], self.material_buckets[:, 1])
def __call__( self, env: ManagerBasedEnv, env_ids: torch.Tensor | None, static_friction_range: tuple[float, float], dynamic_friction_range: tuple[float, float], restitution_range: tuple[float, float], num_buckets: int, asset_cfg: SceneEntityCfg, make_consistent: bool = False, ): # resolve environment ids if env_ids is None: env_ids = torch.arange(env.scene.num_envs, device="cpu") else: env_ids = env_ids.cpu() # randomly assign material IDs to the geometries total_num_shapes = self.asset.root_physx_view.max_shapes bucket_ids = torch.randint(0, num_buckets, (len(env_ids), total_num_shapes), device="cpu") material_samples = self.material_buckets[bucket_ids] # retrieve material buffer from the physics simulation materials = self.asset.root_physx_view.get_material_properties() # update material buffer with new samples if self.num_shapes_per_body is not None: # sample material properties from the given ranges for body_id in self.asset_cfg.body_ids: # obtain indices of shapes for the body start_idx = sum(self.num_shapes_per_body[:body_id]) end_idx = start_idx + self.num_shapes_per_body[body_id] # assign the new materials # material samples are of shape: num_env_ids x total_num_shapes x 3 materials[env_ids, start_idx:end_idx] = material_samples[:, start_idx:end_idx] else: # assign all the materials materials[env_ids] = material_samples[:] # apply to simulation self.asset.root_physx_view.set_material_properties(materials, env_ids)
[文档]def randomize_rigid_body_mass( env: ManagerBasedEnv, env_ids: torch.Tensor | None, asset_cfg: SceneEntityCfg, mass_distribution_params: tuple[float, float], operation: Literal["add", "scale", "abs"], distribution: Literal["uniform", "log_uniform", "gaussian"] = "uniform", recompute_inertia: bool = True, ): """Randomize the mass of the bodies by adding, scaling, or setting random values. This function allows randomizing the mass of the bodies of the asset. The function samples random values from the given distribution parameters and adds, scales, or sets the values into the physics simulation based on the operation. If the ``recompute_inertia`` flag is set to ``True``, the function recomputes the inertia tensor of the bodies after setting the mass. This is useful when the mass is changed significantly, as the inertia tensor depends on the mass. It assumes the body is a uniform density object. If the body is not a uniform density object, the inertia tensor may not be accurate. .. tip:: This function uses CPU tensors to assign the body masses. It is recommended to use this function only during the initialization of the environment. """ # extract the used quantities (to enable type-hinting) asset: RigidObject | Articulation = env.scene[asset_cfg.name] # resolve environment ids if env_ids is None: env_ids = torch.arange(env.scene.num_envs, device="cpu") else: env_ids = env_ids.cpu() # resolve body indices if asset_cfg.body_ids == slice(None): body_ids = torch.arange(asset.num_bodies, dtype=torch.int, device="cpu") else: body_ids = torch.tensor(asset_cfg.body_ids, dtype=torch.int, device="cpu") # get the current masses of the bodies (num_assets, num_bodies) masses = asset.root_physx_view.get_masses() # apply randomization on default values # this is to make sure when calling the function multiple times, the randomization is applied on the # default values and not the previously randomized values masses[env_ids[:, None], body_ids] = asset.data.default_mass[env_ids[:, None], body_ids].clone() # sample from the given range # note: we modify the masses in-place for all environments # however, the setter takes care that only the masses of the specified environments are modified masses = _randomize_prop_by_op( masses, mass_distribution_params, env_ids, body_ids, operation=operation, distribution=distribution ) # set the mass into the physics simulation asset.root_physx_view.set_masses(masses, env_ids) # recompute inertia tensors if needed if recompute_inertia: # compute the ratios of the new masses to the initial masses ratios = masses[env_ids[:, None], body_ids] / asset.data.default_mass[env_ids[:, None], body_ids] # scale the inertia tensors by the the ratios # since mass randomization is done on default values, we can use the default inertia tensors inertias = asset.root_physx_view.get_inertias() if isinstance(asset, Articulation): # inertia has shape: (num_envs, num_bodies, 9) for articulation inertias[env_ids[:, None], body_ids] = ( asset.data.default_inertia[env_ids[:, None], body_ids] * ratios[..., None] ) else: # inertia has shape: (num_envs, 9) for rigid object inertias[env_ids] = asset.data.default_inertia[env_ids] * ratios # set the inertia tensors into the physics simulation asset.root_physx_view.set_inertias(inertias, env_ids)
[文档]def randomize_physics_scene_gravity( env: ManagerBasedEnv, env_ids: torch.Tensor | None, gravity_distribution_params: tuple[list[float], list[float]], operation: Literal["add", "scale", "abs"], distribution: Literal["uniform", "log_uniform", "gaussian"] = "uniform", ): """Randomize gravity by adding, scaling, or setting random values. This function allows randomizing gravity of the physics scene. The function samples random values from the given distribution parameters and adds, scales, or sets the values into the physics simulation based on the operation. The distribution parameters are lists of two elements each, representing the lower and upper bounds of the distribution for the x, y, and z components of the gravity vector. The function samples random values for each component independently. .. attention:: This function applied the same gravity for all the environments. .. tip:: This function uses CPU tensors to assign gravity. """ # get the current gravity gravity = torch.tensor(env.sim.cfg.gravity, device="cpu").unsqueeze(0) dist_param_0 = torch.tensor(gravity_distribution_params[0], device="cpu") dist_param_1 = torch.tensor(gravity_distribution_params[1], device="cpu") gravity = _randomize_prop_by_op( gravity, (dist_param_0, dist_param_1), None, slice(None), operation=operation, distribution=distribution, ) # unbatch the gravity tensor into a list gravity = gravity[0].tolist() # set the gravity into the physics simulation physics_sim_view: physx.SimulationView = sim_utils.SimulationContext.instance().physics_sim_view physics_sim_view.set_gravity(carb.Float3(*gravity))
[文档]def randomize_actuator_gains( env: ManagerBasedEnv, env_ids: torch.Tensor | None, asset_cfg: SceneEntityCfg, stiffness_distribution_params: tuple[float, float] | None = None, damping_distribution_params: tuple[float, float] | None = None, operation: Literal["add", "scale", "abs"] = "abs", distribution: Literal["uniform", "log_uniform", "gaussian"] = "uniform", ): """Randomize the actuator gains in an articulation by adding, scaling, or setting random values. This function allows randomizing the actuator stiffness and damping gains. The function samples random values from the given distribution parameters and applies the operation to the joint properties. It then sets the values into the actuator models. If the distribution parameters are not provided for a particular property, the function does not modify the property. .. tip:: For implicit actuators, this function uses CPU tensors to assign the actuator gains into the simulation. In such cases, it is recommended to use this function only during the initialization of the environment. """ # Extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # Resolve environment ids if env_ids is None: env_ids = torch.arange(env.scene.num_envs, device=asset.device) def randomize(data: torch.Tensor, params: tuple[float, float]) -> torch.Tensor: return _randomize_prop_by_op( data, params, dim_0_ids=None, dim_1_ids=actuator_indices, operation=operation, distribution=distribution ) # Loop through actuators and randomize gains for actuator in asset.actuators.values(): if isinstance(asset_cfg.joint_ids, slice): # we take all the joints of the actuator actuator_indices = slice(None) if isinstance(actuator.joint_indices, slice): global_indices = slice(None) else: global_indices = torch.tensor(actuator.joint_indices, device=asset.device) elif isinstance(actuator.joint_indices, slice): # we take the joints defined in the asset config global_indices = actuator_indices = torch.tensor(asset_cfg.joint_ids, device=asset.device) else: # we take the intersection of the actuator joints and the asset config joints actuator_joint_indices = torch.tensor(actuator.joint_indices, device=asset.device) asset_joint_ids = torch.tensor(asset_cfg.joint_ids, device=asset.device) # the indices of the joints in the actuator that have to be randomized actuator_indices = torch.nonzero(torch.isin(actuator_joint_indices, asset_joint_ids)).view(-1) if len(actuator_indices) == 0: continue # maps actuator indices that have to be randomized to global joint indices global_indices = actuator_joint_indices[actuator_indices] # Randomize stiffness if stiffness_distribution_params is not None: stiffness = actuator.stiffness[env_ids].clone() stiffness[:, actuator_indices] = asset.data.default_joint_stiffness[env_ids][:, global_indices].clone() randomize(stiffness, stiffness_distribution_params) actuator.stiffness[env_ids] = stiffness if isinstance(actuator, ImplicitActuator): asset.write_joint_stiffness_to_sim(stiffness, joint_ids=actuator.joint_indices, env_ids=env_ids) # Randomize damping if damping_distribution_params is not None: damping = actuator.damping[env_ids].clone() damping[:, actuator_indices] = asset.data.default_joint_damping[env_ids][:, global_indices].clone() randomize(damping, damping_distribution_params) actuator.damping[env_ids] = damping if isinstance(actuator, ImplicitActuator): asset.write_joint_damping_to_sim(damping, joint_ids=actuator.joint_indices, env_ids=env_ids)
[文档]def randomize_joint_parameters( env: ManagerBasedEnv, env_ids: torch.Tensor | None, asset_cfg: SceneEntityCfg, friction_distribution_params: tuple[float, float] | None = None, armature_distribution_params: tuple[float, float] | None = None, lower_limit_distribution_params: tuple[float, float] | None = None, upper_limit_distribution_params: tuple[float, float] | None = None, operation: Literal["add", "scale", "abs"] = "abs", distribution: Literal["uniform", "log_uniform", "gaussian"] = "uniform", ): """Randomize the joint parameters of an articulation by adding, scaling, or setting random values. This function allows randomizing the joint parameters of the asset. These correspond to the physics engine joint properties that affect the joint behavior. The function samples random values from the given distribution parameters and applies the operation to the joint properties. It then sets the values into the physics simulation. If the distribution parameters are not provided for a particular property, the function does not modify the property. .. tip:: This function uses CPU tensors to assign the joint properties. It is recommended to use this function only during the initialization of the environment. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # resolve environment ids if env_ids is None: env_ids = torch.arange(env.scene.num_envs, device=asset.device) # resolve joint indices if asset_cfg.joint_ids == slice(None): joint_ids = slice(None) # for optimization purposes else: joint_ids = torch.tensor(asset_cfg.joint_ids, dtype=torch.int, device=asset.device) # sample joint properties from the given ranges and set into the physics simulation # -- friction if friction_distribution_params is not None: friction = asset.data.default_joint_friction.to(asset.device).clone() friction = _randomize_prop_by_op( friction, friction_distribution_params, env_ids, joint_ids, operation=operation, distribution=distribution )[env_ids][:, joint_ids] asset.write_joint_friction_to_sim(friction, joint_ids=joint_ids, env_ids=env_ids) # -- armature if armature_distribution_params is not None: armature = asset.data.default_joint_armature.to(asset.device).clone() armature = _randomize_prop_by_op( armature, armature_distribution_params, env_ids, joint_ids, operation=operation, distribution=distribution )[env_ids][:, joint_ids] asset.write_joint_armature_to_sim(armature, joint_ids=joint_ids, env_ids=env_ids) # -- dof limits if lower_limit_distribution_params is not None or upper_limit_distribution_params is not None: dof_limits = asset.data.default_joint_limits.to(asset.device).clone() if lower_limit_distribution_params is not None: lower_limits = dof_limits[..., 0] lower_limits = _randomize_prop_by_op( lower_limits, lower_limit_distribution_params, env_ids, joint_ids, operation=operation, distribution=distribution, )[env_ids][:, joint_ids] dof_limits[env_ids[:, None], joint_ids, 0] = lower_limits if upper_limit_distribution_params is not None: upper_limits = dof_limits[..., 1] upper_limits = _randomize_prop_by_op( upper_limits, upper_limit_distribution_params, env_ids, joint_ids, operation=operation, distribution=distribution, )[env_ids][:, joint_ids] dof_limits[env_ids[:, None], joint_ids, 1] = upper_limits if (dof_limits[env_ids[:, None], joint_ids, 0] > dof_limits[env_ids[:, None], joint_ids, 1]).any(): raise ValueError( "Randomization term 'randomize_joint_parameters' is setting lower joint limits that are greater than" " upper joint limits." ) asset.write_joint_limits_to_sim(dof_limits[env_ids][:, joint_ids], joint_ids=joint_ids, env_ids=env_ids)
[文档]def randomize_fixed_tendon_parameters( env: ManagerBasedEnv, env_ids: torch.Tensor | None, asset_cfg: SceneEntityCfg, stiffness_distribution_params: tuple[float, float] | None = None, damping_distribution_params: tuple[float, float] | None = None, limit_stiffness_distribution_params: tuple[float, float] | None = None, lower_limit_distribution_params: tuple[float, float] | None = None, upper_limit_distribution_params: tuple[float, float] | None = None, rest_length_distribution_params: tuple[float, float] | None = None, offset_distribution_params: tuple[float, float] | None = None, operation: Literal["add", "scale", "abs"] = "abs", distribution: Literal["uniform", "log_uniform", "gaussian"] = "uniform", ): """Randomize the fixed tendon parameters of an articulation by adding, scaling, or setting random values. This function allows randomizing the fixed tendon parameters of the asset. These correspond to the physics engine tendon properties that affect the joint behavior. The function samples random values from the given distribution parameters and applies the operation to the tendon properties. It then sets the values into the physics simulation. If the distribution parameters are not provided for a particular property, the function does not modify the property. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # resolve environment ids if env_ids is None: env_ids = torch.arange(env.scene.num_envs, device=asset.device) # resolve joint indices if asset_cfg.fixed_tendon_ids == slice(None): fixed_tendon_ids = slice(None) # for optimization purposes else: fixed_tendon_ids = torch.tensor(asset_cfg.fixed_tendon_ids, dtype=torch.int, device=asset.device) # sample tendon properties from the given ranges and set into the physics simulation # -- stiffness if stiffness_distribution_params is not None: stiffness = asset.data.default_fixed_tendon_stiffness.clone() stiffness = _randomize_prop_by_op( stiffness, stiffness_distribution_params, env_ids, fixed_tendon_ids, operation=operation, distribution=distribution, )[env_ids][:, fixed_tendon_ids] asset.set_fixed_tendon_stiffness(stiffness, fixed_tendon_ids, env_ids) # -- damping if damping_distribution_params is not None: damping = asset.data.default_fixed_tendon_damping.clone() damping = _randomize_prop_by_op( damping, damping_distribution_params, env_ids, fixed_tendon_ids, operation=operation, distribution=distribution, )[env_ids][:, fixed_tendon_ids] asset.set_fixed_tendon_damping(damping, fixed_tendon_ids, env_ids) # -- limit stiffness if limit_stiffness_distribution_params is not None: limit_stiffness = asset.data.default_fixed_tendon_limit_stiffness.clone() limit_stiffness = _randomize_prop_by_op( limit_stiffness, limit_stiffness_distribution_params, env_ids, fixed_tendon_ids, operation=operation, distribution=distribution, )[env_ids][:, fixed_tendon_ids] asset.set_fixed_tendon_limit_stiffness(limit_stiffness, fixed_tendon_ids, env_ids) # -- limits if lower_limit_distribution_params is not None or upper_limit_distribution_params is not None: limit = asset.data.default_fixed_tendon_limit.clone() # -- lower limit if lower_limit_distribution_params is not None: lower_limit = limit[..., 0] lower_limit = _randomize_prop_by_op( lower_limit, lower_limit_distribution_params, env_ids, fixed_tendon_ids, operation=operation, distribution=distribution, )[env_ids][:, fixed_tendon_ids] limit[env_ids[:, None], fixed_tendon_ids, 0] = lower_limit # -- upper limit if upper_limit_distribution_params is not None: upper_limit = limit[..., 1] upper_limit = _randomize_prop_by_op( upper_limit, upper_limit_distribution_params, env_ids, fixed_tendon_ids, operation=operation, distribution=distribution, )[env_ids][:, fixed_tendon_ids] limit[env_ids[:, None], fixed_tendon_ids, 1] = upper_limit if (limit[env_ids[:, None], fixed_tendon_ids, 0] > limit[env_ids[:, None], fixed_tendon_ids, 1]).any(): raise ValueError( "Randomization term 'randomize_fixed_tendon_parameters' is setting lower tendon limits that are greater" " than upper tendon limits." ) asset.set_fixed_tendon_limit(limit, fixed_tendon_ids, env_ids) # -- rest length if rest_length_distribution_params is not None: rest_length = asset.data.default_fixed_tendon_rest_length.clone() rest_length = _randomize_prop_by_op( rest_length, rest_length_distribution_params, env_ids, fixed_tendon_ids, operation=operation, distribution=distribution, )[env_ids][:, fixed_tendon_ids] asset.set_fixed_tendon_rest_length(rest_length, fixed_tendon_ids, env_ids) # -- offset if offset_distribution_params is not None: offset = asset.data.default_fixed_tendon_offset.clone() offset = _randomize_prop_by_op( offset, offset_distribution_params, env_ids, fixed_tendon_ids, operation=operation, distribution=distribution, )[env_ids][:, fixed_tendon_ids] asset.set_fixed_tendon_offset(offset, fixed_tendon_ids, env_ids) asset.write_fixed_tendon_properties_to_sim(fixed_tendon_ids, env_ids)
[文档]def apply_external_force_torque( env: ManagerBasedEnv, env_ids: torch.Tensor, force_range: tuple[float, float], torque_range: tuple[float, float], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): """Randomize the external forces and torques applied to the bodies. This function creates a set of random forces and torques sampled from the given ranges. The number of forces and torques is equal to the number of bodies times the number of environments. The forces and torques are applied to the bodies by calling ``asset.set_external_force_and_torque``. The forces and torques are only applied when ``asset.write_data_to_sim()`` is called in the environment. """ # extract the used quantities (to enable type-hinting) asset: RigidObject | Articulation = env.scene[asset_cfg.name] # resolve environment ids if env_ids is None: env_ids = torch.arange(env.scene.num_envs, device=asset.device) # resolve number of bodies num_bodies = len(asset_cfg.body_ids) if isinstance(asset_cfg.body_ids, list) else asset.num_bodies # sample random forces and torques size = (len(env_ids), num_bodies, 3) forces = math_utils.sample_uniform(*force_range, size, asset.device) torques = math_utils.sample_uniform(*torque_range, size, asset.device) # set the forces and torques into the buffers # note: these are only applied when you call: `asset.write_data_to_sim()` asset.set_external_force_and_torque(forces, torques, env_ids=env_ids, body_ids=asset_cfg.body_ids)
[文档]def push_by_setting_velocity( env: ManagerBasedEnv, env_ids: torch.Tensor, velocity_range: dict[str, tuple[float, float]], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): """Push the asset by setting the root velocity to a random value within the given ranges. This creates an effect similar to pushing the asset with a random impulse that changes the asset's velocity. It samples the root velocity from the given ranges and sets the velocity into the physics simulation. The function takes a dictionary of velocity ranges for each axis and rotation. The keys of the dictionary are ``x``, ``y``, ``z``, ``roll``, ``pitch``, and ``yaw``. The values are tuples of the form ``(min, max)``. If the dictionary does not contain a key, the velocity is set to zero for that axis. """ # extract the used quantities (to enable type-hinting) asset: RigidObject | Articulation = env.scene[asset_cfg.name] # velocities vel_w = asset.data.root_vel_w[env_ids] # sample random velocities range_list = [velocity_range.get(key, (0.0, 0.0)) for key in ["x", "y", "z", "roll", "pitch", "yaw"]] ranges = torch.tensor(range_list, device=asset.device) vel_w[:] = math_utils.sample_uniform(ranges[:, 0], ranges[:, 1], vel_w.shape, device=asset.device) # set the velocities into the physics simulation asset.write_root_velocity_to_sim(vel_w, env_ids=env_ids)
[文档]def reset_root_state_uniform( env: ManagerBasedEnv, env_ids: torch.Tensor, pose_range: dict[str, tuple[float, float]], velocity_range: dict[str, tuple[float, float]], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): """Reset the asset root state to a random position and velocity uniformly within the given ranges. This function randomizes the root position and velocity of the asset. * It samples the root position from the given ranges and adds them to the default root position, before setting them into the physics simulation. * It samples the root orientation from the given ranges and sets them into the physics simulation. * It samples the root velocity from the given ranges and sets them into the physics simulation. The function takes a dictionary of pose and velocity ranges for each axis and rotation. The keys of the dictionary are ``x``, ``y``, ``z``, ``roll``, ``pitch``, and ``yaw``. The values are tuples of the form ``(min, max)``. If the dictionary does not contain a key, the position or velocity is set to zero for that axis. """ # extract the used quantities (to enable type-hinting) asset: RigidObject | Articulation = env.scene[asset_cfg.name] # get default root state root_states = asset.data.default_root_state[env_ids].clone() # poses range_list = [pose_range.get(key, (0.0, 0.0)) for key in ["x", "y", "z", "roll", "pitch", "yaw"]] ranges = torch.tensor(range_list, device=asset.device) rand_samples = math_utils.sample_uniform(ranges[:, 0], ranges[:, 1], (len(env_ids), 6), device=asset.device) positions = root_states[:, 0:3] + env.scene.env_origins[env_ids] + rand_samples[:, 0:3] orientations_delta = math_utils.quat_from_euler_xyz(rand_samples[:, 3], rand_samples[:, 4], rand_samples[:, 5]) orientations = math_utils.quat_mul(root_states[:, 3:7], orientations_delta) # velocities range_list = [velocity_range.get(key, (0.0, 0.0)) for key in ["x", "y", "z", "roll", "pitch", "yaw"]] ranges = torch.tensor(range_list, device=asset.device) rand_samples = math_utils.sample_uniform(ranges[:, 0], ranges[:, 1], (len(env_ids), 6), device=asset.device) velocities = root_states[:, 7:13] + rand_samples # set into the physics simulation asset.write_root_pose_to_sim(torch.cat([positions, orientations], dim=-1), env_ids=env_ids) asset.write_root_velocity_to_sim(velocities, env_ids=env_ids)
[文档]def reset_root_state_with_random_orientation( env: ManagerBasedEnv, env_ids: torch.Tensor, pose_range: dict[str, tuple[float, float]], velocity_range: dict[str, tuple[float, float]], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): """Reset the asset root position and velocities sampled randomly within the given ranges and the asset root orientation sampled randomly from the SO(3). This function randomizes the root position and velocity of the asset. * It samples the root position from the given ranges and adds them to the default root position, before setting them into the physics simulation. * It samples the root orientation uniformly from the SO(3) and sets them into the physics simulation. * It samples the root velocity from the given ranges and sets them into the physics simulation. The function takes a dictionary of position and velocity ranges for each axis and rotation: * :attr:`pose_range` - a dictionary of position ranges for each axis. The keys of the dictionary are ``x``, ``y``, and ``z``. The orientation is sampled uniformly from the SO(3). * :attr:`velocity_range` - a dictionary of velocity ranges for each axis and rotation. The keys of the dictionary are ``x``, ``y``, ``z``, ``roll``, ``pitch``, and ``yaw``. The values are tuples of the form ``(min, max)``. If the dictionary does not contain a particular key, the position is set to zero for that axis. """ # extract the used quantities (to enable type-hinting) asset: RigidObject | Articulation = env.scene[asset_cfg.name] # get default root state root_states = asset.data.default_root_state[env_ids].clone() # poses range_list = [pose_range.get(key, (0.0, 0.0)) for key in ["x", "y", "z"]] ranges = torch.tensor(range_list, device=asset.device) rand_samples = math_utils.sample_uniform(ranges[:, 0], ranges[:, 1], (len(env_ids), 3), device=asset.device) positions = root_states[:, 0:3] + env.scene.env_origins[env_ids] + rand_samples orientations = math_utils.random_orientation(len(env_ids), device=asset.device) # velocities range_list = [velocity_range.get(key, (0.0, 0.0)) for key in ["x", "y", "z", "roll", "pitch", "yaw"]] ranges = torch.tensor(range_list, device=asset.device) rand_samples = math_utils.sample_uniform(ranges[:, 0], ranges[:, 1], (len(env_ids), 6), device=asset.device) velocities = root_states[:, 7:13] + rand_samples # set into the physics simulation asset.write_root_pose_to_sim(torch.cat([positions, orientations], dim=-1), env_ids=env_ids) asset.write_root_velocity_to_sim(velocities, env_ids=env_ids)
[文档]def reset_root_state_from_terrain( env: ManagerBasedEnv, env_ids: torch.Tensor, pose_range: dict[str, tuple[float, float]], velocity_range: dict[str, tuple[float, float]], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): """Reset the asset root state by sampling a random valid pose from the terrain. This function samples a random valid pose(based on flat patches) from the terrain and sets the root state of the asset to this position. The function also samples random velocities from the given ranges and sets them into the physics simulation. The function takes a dictionary of position and velocity ranges for each axis and rotation: * :attr:`pose_range` - a dictionary of pose ranges for each axis. The keys of the dictionary are ``roll``, ``pitch``, and ``yaw``. The position is sampled from the flat patches of the terrain. * :attr:`velocity_range` - a dictionary of velocity ranges for each axis and rotation. The keys of the dictionary are ``x``, ``y``, ``z``, ``roll``, ``pitch``, and ``yaw``. The values are tuples of the form ``(min, max)``. If the dictionary does not contain a particular key, the position is set to zero for that axis. Note: The function expects the terrain to have valid flat patches under the key "init_pos". The flat patches are used to sample the random pose for the robot. Raises: ValueError: If the terrain does not have valid flat patches under the key "init_pos". """ # access the used quantities (to enable type-hinting) asset: RigidObject | Articulation = env.scene[asset_cfg.name] terrain: TerrainImporter = env.scene.terrain # obtain all flat patches corresponding to the valid poses valid_positions: torch.Tensor = terrain.flat_patches.get("init_pos") if valid_positions is None: raise ValueError( "The event term 'reset_root_state_from_terrain' requires valid flat patches under 'init_pos'." f" Found: {list(terrain.flat_patches.keys())}" ) # sample random valid poses ids = torch.randint(0, valid_positions.shape[2], size=(len(env_ids),), device=env.device) positions = valid_positions[terrain.terrain_levels[env_ids], terrain.terrain_types[env_ids], ids] positions += asset.data.default_root_state[env_ids, :3] # sample random orientations range_list = [pose_range.get(key, (0.0, 0.0)) for key in ["roll", "pitch", "yaw"]] ranges = torch.tensor(range_list, device=asset.device) rand_samples = math_utils.sample_uniform(ranges[:, 0], ranges[:, 1], (len(env_ids), 3), device=asset.device) # convert to quaternions orientations = math_utils.quat_from_euler_xyz(rand_samples[:, 0], rand_samples[:, 1], rand_samples[:, 2]) # sample random velocities range_list = [velocity_range.get(key, (0.0, 0.0)) for key in ["x", "y", "z", "roll", "pitch", "yaw"]] ranges = torch.tensor(range_list, device=asset.device) rand_samples = math_utils.sample_uniform(ranges[:, 0], ranges[:, 1], (len(env_ids), 6), device=asset.device) velocities = asset.data.default_root_state[:, 7:13] + rand_samples # set into the physics simulation asset.write_root_pose_to_sim(torch.cat([positions, orientations], dim=-1), env_ids=env_ids) asset.write_root_velocity_to_sim(velocities, env_ids=env_ids)
[文档]def reset_joints_by_scale( env: ManagerBasedEnv, env_ids: torch.Tensor, position_range: tuple[float, float], velocity_range: tuple[float, float], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): """Reset the robot joints by scaling the default position and velocity by the given ranges. This function samples random values from the given ranges and scales the default joint positions and velocities by these values. The scaled values are then set into the physics simulation. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # get default joint state joint_pos = asset.data.default_joint_pos[env_ids].clone() joint_vel = asset.data.default_joint_vel[env_ids].clone() # scale these values randomly joint_pos *= math_utils.sample_uniform(*position_range, joint_pos.shape, joint_pos.device) joint_vel *= math_utils.sample_uniform(*velocity_range, joint_vel.shape, joint_vel.device) # clamp joint pos to limits joint_pos_limits = asset.data.soft_joint_pos_limits[env_ids] joint_pos = joint_pos.clamp_(joint_pos_limits[..., 0], joint_pos_limits[..., 1]) # clamp joint vel to limits joint_vel_limits = asset.data.soft_joint_vel_limits[env_ids] joint_vel = joint_vel.clamp_(-joint_vel_limits, joint_vel_limits) # set into the physics simulation asset.write_joint_state_to_sim(joint_pos, joint_vel, env_ids=env_ids)
[文档]def reset_joints_by_offset( env: ManagerBasedEnv, env_ids: torch.Tensor, position_range: tuple[float, float], velocity_range: tuple[float, float], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): """Reset the robot joints with offsets around the default position and velocity by the given ranges. This function samples random values from the given ranges and biases the default joint positions and velocities by these values. The biased values are then set into the physics simulation. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # get default joint state joint_pos = asset.data.default_joint_pos[env_ids].clone() joint_vel = asset.data.default_joint_vel[env_ids].clone() # bias these values randomly joint_pos += math_utils.sample_uniform(*position_range, joint_pos.shape, joint_pos.device) joint_vel += math_utils.sample_uniform(*velocity_range, joint_vel.shape, joint_vel.device) # clamp joint pos to limits joint_pos_limits = asset.data.soft_joint_pos_limits[env_ids] joint_pos = joint_pos.clamp_(joint_pos_limits[..., 0], joint_pos_limits[..., 1]) # clamp joint vel to limits joint_vel_limits = asset.data.soft_joint_vel_limits[env_ids] joint_vel = joint_vel.clamp_(-joint_vel_limits, joint_vel_limits) # set into the physics simulation asset.write_joint_state_to_sim(joint_pos, joint_vel, env_ids=env_ids)
[文档]def reset_nodal_state_uniform( env: ManagerBasedEnv, env_ids: torch.Tensor, position_range: dict[str, tuple[float, float]], velocity_range: dict[str, tuple[float, float]], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): """Reset the asset nodal state to a random position and velocity uniformly within the given ranges. This function randomizes the nodal position and velocity of the asset. * It samples the root position from the given ranges and adds them to the default nodal position, before setting them into the physics simulation. * It samples the root velocity from the given ranges and sets them into the physics simulation. The function takes a dictionary of position and velocity ranges for each axis. The keys of the dictionary are ``x``, ``y``, ``z``. The values are tuples of the form ``(min, max)``. If the dictionary does not contain a key, the position or velocity is set to zero for that axis. """ # extract the used quantities (to enable type-hinting) asset: DeformableObject = env.scene[asset_cfg.name] # get default root state nodal_state = asset.data.default_nodal_state_w[env_ids].clone() # position range_list = [position_range.get(key, (0.0, 0.0)) for key in ["x", "y", "z"]] ranges = torch.tensor(range_list, device=asset.device) rand_samples = math_utils.sample_uniform(ranges[:, 0], ranges[:, 1], (len(env_ids), 1, 3), device=asset.device) nodal_state[..., :3] += rand_samples # velocities range_list = [velocity_range.get(key, (0.0, 0.0)) for key in ["x", "y", "z"]] ranges = torch.tensor(range_list, device=asset.device) rand_samples = math_utils.sample_uniform(ranges[:, 0], ranges[:, 1], (len(env_ids), 1, 3), device=asset.device) nodal_state[..., 3:] += rand_samples # set into the physics simulation asset.write_nodal_state_to_sim(nodal_state, env_ids=env_ids)
[文档]def reset_scene_to_default(env: ManagerBasedEnv, env_ids: torch.Tensor): """Reset the scene to the default state specified in the scene configuration.""" # rigid bodies for rigid_object in env.scene.rigid_objects.values(): # obtain default and deal with the offset for env origins default_root_state = rigid_object.data.default_root_state[env_ids].clone() default_root_state[:, 0:3] += env.scene.env_origins[env_ids] # set into the physics simulation rigid_object.write_root_state_to_sim(default_root_state, env_ids=env_ids) # articulations for articulation_asset in env.scene.articulations.values(): # obtain default and deal with the offset for env origins default_root_state = articulation_asset.data.default_root_state[env_ids].clone() default_root_state[:, 0:3] += env.scene.env_origins[env_ids] # set into the physics simulation articulation_asset.write_root_state_to_sim(default_root_state, env_ids=env_ids) # obtain default joint positions default_joint_pos = articulation_asset.data.default_joint_pos[env_ids].clone() default_joint_vel = articulation_asset.data.default_joint_vel[env_ids].clone() # set into the physics simulation articulation_asset.write_joint_state_to_sim(default_joint_pos, default_joint_vel, env_ids=env_ids) # deformable objects for deformable_object in env.scene.deformable_objects.values(): # obtain default and set into the physics simulation nodal_state = deformable_object.data.default_nodal_state_w[env_ids].clone() deformable_object.write_nodal_state_to_sim(nodal_state, env_ids=env_ids)
""" Internal helper functions. """ def _randomize_prop_by_op( data: torch.Tensor, distribution_parameters: tuple[float | torch.Tensor, float | torch.Tensor], dim_0_ids: torch.Tensor | None, dim_1_ids: torch.Tensor | slice, operation: Literal["add", "scale", "abs"], distribution: Literal["uniform", "log_uniform", "gaussian"], ) -> torch.Tensor: """Perform data randomization based on the given operation and distribution. Args: data: The data tensor to be randomized. Shape is (dim_0, dim_1). distribution_parameters: The parameters for the distribution to sample values from. dim_0_ids: The indices of the first dimension to randomize. dim_1_ids: The indices of the second dimension to randomize. operation: The operation to perform on the data. Options: 'add', 'scale', 'abs'. distribution: The distribution to sample the random values from. Options: 'uniform', 'log_uniform'. Returns: The data tensor after randomization. Shape is (dim_0, dim_1). Raises: NotImplementedError: If the operation or distribution is not supported. """ # resolve shape # -- dim 0 if dim_0_ids is None: n_dim_0 = data.shape[0] dim_0_ids = slice(None) else: n_dim_0 = len(dim_0_ids) if not isinstance(dim_1_ids, slice): dim_0_ids = dim_0_ids[:, None] # -- dim 1 if isinstance(dim_1_ids, slice): n_dim_1 = data.shape[1] else: n_dim_1 = len(dim_1_ids) # resolve the distribution if distribution == "uniform": dist_fn = math_utils.sample_uniform elif distribution == "log_uniform": dist_fn = math_utils.sample_log_uniform elif distribution == "gaussian": dist_fn = math_utils.sample_gaussian else: raise NotImplementedError( f"Unknown distribution: '{distribution}' for joint properties randomization." " Please use 'uniform', 'log_uniform', 'gaussian'." ) # perform the operation if operation == "add": data[dim_0_ids, dim_1_ids] += dist_fn(*distribution_parameters, (n_dim_0, n_dim_1), device=data.device) elif operation == "scale": data[dim_0_ids, dim_1_ids] *= dist_fn(*distribution_parameters, (n_dim_0, n_dim_1), device=data.device) elif operation == "abs": data[dim_0_ids, dim_1_ids] = dist_fn(*distribution_parameters, (n_dim_0, n_dim_1), device=data.device) else: raise NotImplementedError( f"Unknown operation: '{operation}' for property randomization. Please use 'add', 'scale', or 'abs'." ) return data