Source code for isaaclab.controllers.pink_ik.pink_ik

# Copyright (c) 2022-2025, The Isaac Lab Project Developers (https://github.com/isaac-sim/IsaacLab/blob/main/CONTRIBUTORS.md).
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause

"""Pink IK controller implementation for IsaacLab.

This module provides integration between Pink inverse kinematics solver and IsaacLab.
Pink is a differentiable inverse kinematics solver framework that provides task-space control capabilities.

Reference:
    Pink IK Solver: https://github.com/stephane-caron/pink
"""

from __future__ import annotations

import numpy as np
import torch
from typing import TYPE_CHECKING

from pink import solve_ik
from pink.configuration import Configuration
from pink.tasks import FrameTask
from pinocchio.robot_wrapper import RobotWrapper

from isaaclab.assets import ArticulationCfg
from isaaclab.utils.string import resolve_matching_names_values

from .null_space_posture_task import NullSpacePostureTask

if TYPE_CHECKING:
    from .pink_ik_cfg import PinkIKControllerCfg


[docs]class PinkIKController: """Integration of Pink IK controller with Isaac Lab. The Pink IK controller solves differential inverse kinematics through weighted tasks. Each task is defined by a residual function e(q) that is driven to zero (e.g., e(q) = p_target - p_ee(q) for end-effector positioning). The controller computes joint velocities v satisfying J_e(q)v = -αe(q), where J_e(q) is the task Jacobian. Multiple tasks are resolved through weighted optimization, formulating a quadratic program that minimizes weighted task errors while respecting joint velocity limits. It supports user defined tasks, and we have provided a NullSpacePostureTask for maintaining desired joint configurations. Reference: Pink IK Solver: https://github.com/stephane-caron/pink """
[docs] def __init__(self, cfg: PinkIKControllerCfg, robot_cfg: ArticulationCfg, device: str): """Initialize the Pink IK Controller. Args: cfg: The configuration for the Pink IK controller containing task definitions, solver parameters, and joint configurations. robot_cfg: The robot articulation configuration containing initial joint positions and robot specifications. device: The device to use for computations (e.g., 'cuda:0', 'cpu'). Raises: KeyError: When Pink joint names cannot be matched to robot configuration joint positions. """ # Initialize the robot model from URDF and mesh files self.robot_wrapper = RobotWrapper.BuildFromURDF(cfg.urdf_path, cfg.mesh_path, root_joint=None) self.pink_configuration = Configuration( self.robot_wrapper.model, self.robot_wrapper.data, self.robot_wrapper.q0 ) # Find the initial joint positions by matching Pink's joint names to robot_cfg.init_state.joint_pos, # where the joint_pos keys may be regex patterns and the values are the initial positions. # We want to assign to each Pink joint name the value from the first matching regex key in joint_pos. pink_joint_names = self.pink_configuration.model.names.tolist()[1:] joint_pos_dict = robot_cfg.init_state.joint_pos # Use resolve_matching_names_values to match Pink joint names to joint_pos values indices, names, values = resolve_matching_names_values( joint_pos_dict, pink_joint_names, preserve_order=False, strict=False ) if len(indices) != len(pink_joint_names): unmatched = [name for name in pink_joint_names if name not in names] raise KeyError( "Could not find a match for all Pink joint names in robot_cfg.init_state.joint_pos. " f"Unmatched: {unmatched}, Expected: {pink_joint_names}" ) self.init_joint_positions = np.array(values) # Set the default targets for each task from the configuration for task in cfg.variable_input_tasks: # If task is a NullSpacePostureTask, set the target to the initial joint positions if isinstance(task, NullSpacePostureTask): task.set_target(self.init_joint_positions) continue task.set_target_from_configuration(self.pink_configuration) for task in cfg.fixed_input_tasks: task.set_target_from_configuration(self.pink_configuration) # Map joint names from Isaac Lab to Pink's joint conventions self.pink_joint_names = self.robot_wrapper.model.names.tolist()[1:] # Skip the root and universal joints self.isaac_lab_joint_names = cfg.joint_names assert cfg.joint_names is not None, "cfg.joint_names cannot be None" # Frame task link names self.frame_task_link_names = [] for task in cfg.variable_input_tasks: if isinstance(task, FrameTask): self.frame_task_link_names.append(task.frame) # Create reordering arrays for joint indices self.isaac_lab_to_pink_ordering = np.array( [self.isaac_lab_joint_names.index(pink_joint) for pink_joint in self.pink_joint_names] ) self.pink_to_isaac_lab_ordering = np.array( [self.pink_joint_names.index(isaac_lab_joint) for isaac_lab_joint in self.isaac_lab_joint_names] ) self.cfg = cfg self.device = device
[docs] def update_null_space_joint_targets(self, curr_joint_pos: np.ndarray): """Update the null space joint targets. This method updates the target joint positions for null space posture tasks based on the current joint configuration. This is useful for maintaining desired joint configurations when the primary task allows redundancy. Args: curr_joint_pos: The current joint positions of shape (num_joints,). """ for task in self.cfg.variable_input_tasks: if isinstance(task, NullSpacePostureTask): task.set_target(curr_joint_pos)
[docs] def compute( self, curr_joint_pos: np.ndarray, dt: float, ) -> torch.Tensor: """Compute the target joint positions based on current state and tasks. Performs inverse kinematics using the Pink solver to compute target joint positions that satisfy the defined tasks. The solver uses quadratic programming to find optimal joint velocities that minimize task errors while respecting constraints. Args: curr_joint_pos: The current joint positions of shape (num_joints,). dt: The time step for computing joint position changes in seconds. Returns: The target joint positions as a tensor of shape (num_joints,) on the specified device. If the IK solver fails, returns the current joint positions unchanged to maintain stability. """ # Initialize joint positions for Pink, change from isaac_lab to pink/pinocchio joint ordering. joint_positions_pink = curr_joint_pos[self.isaac_lab_to_pink_ordering] # Update Pink's robot configuration with the current joint positions self.pink_configuration.update(joint_positions_pink) # pink.solve_ik can raise an exception if the solver fails try: velocity = solve_ik( self.pink_configuration, self.cfg.variable_input_tasks + self.cfg.fixed_input_tasks, dt, solver="osqp", safety_break=self.cfg.fail_on_joint_limit_violation, ) Delta_q = velocity * dt except (AssertionError, Exception) as e: # Print warning and return the current joint positions as the target # Not using omni.log since its not available in CI during docs build if self.cfg.show_ik_warnings: print( "Warning: IK quadratic solver could not find a solution! Did not update the target joint" f" positions.\nError: {e}" ) if self.cfg.xr_enabled: from isaaclab.ui.xr_widgets import XRVisualization XRVisualization.push_event("ik_error", {"error": e}) return torch.tensor(curr_joint_pos, device=self.device, dtype=torch.float32) # Discard the first 6 values (for root and universal joints) pink_joint_angle_changes = Delta_q # Reorder the joint angle changes back to Isaac Lab conventions joint_vel_isaac_lab = torch.tensor( pink_joint_angle_changes[self.pink_to_isaac_lab_ordering], device=self.device, dtype=torch.float, ) # Add the velocity changes to the current joint positions to get the target joint positions target_joint_pos = torch.add( joint_vel_isaac_lab, torch.tensor(curr_joint_pos, device=self.device, dtype=torch.float32) ) return target_joint_pos