Frame Transformer

Frame Transformer#

A diagram outlining the basic geometry of frame transformations

One of the most common operations that needs to be performed within a physics simulation is the frame transformation: rewriting a vector or quaternion in the basis of an arbitrary euclidean coordinate system. There are many ways to accomplish this within Isaac and USD, but these methods can be cumbersome to implement within Isaac Lab’s GPU based simulation and cloned environments. To mitigate this problem, we have designed the Frame Transformer Sensor, that tracks and calculate the relative frame transformations for rigid bodies of interest to the scene.

The sensory is minimally defined by a source frame and a list of target frames. These definitions take the form of a prim path (for the source) and list of regex capable prim paths the rigid bodies to be tracked (for the targets).

# Pre-defined configs
##
from isaaclab_assets.robots.anymal import ANYMAL_C_CFG  # isort: skip


@configclass
class FrameTransformerSensorSceneCfg(InteractiveSceneCfg):
    """Design the scene with sensors on the robot."""

    # ground plane
    ground = AssetBaseCfg(prim_path="/World/defaultGroundPlane", spawn=sim_utils.GroundPlaneCfg())

    # lights
    dome_light = AssetBaseCfg(
        prim_path="/World/Light", spawn=sim_utils.DomeLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75))
    )

    # robot
    robot = ANYMAL_C_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot")

    # Rigid Object
    cube = RigidObjectCfg(
        prim_path="{ENV_REGEX_NS}/Cube",
        spawn=sim_utils.CuboidCfg(
            size=(1, 1, 1),
            rigid_props=sim_utils.RigidBodyPropertiesCfg(),
            mass_props=sim_utils.MassPropertiesCfg(mass=100.0),
            collision_props=sim_utils.CollisionPropertiesCfg(),
            physics_material=sim_utils.RigidBodyMaterialCfg(static_friction=1.0),
            visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 1.0, 0.0), metallic=0.2),
        ),
        init_state=RigidObjectCfg.InitialStateCfg(pos=(5, 0, 0.5)),
    )

    specific_transforms = FrameTransformerCfg(
        prim_path="{ENV_REGEX_NS}/Robot/base",
        target_frames=[
            FrameTransformerCfg.FrameCfg(prim_path="{ENV_REGEX_NS}/Robot/LF_FOOT"),
            FrameTransformerCfg.FrameCfg(prim_path="{ENV_REGEX_NS}/Robot/RF_FOOT"),
        ],
        debug_vis=True,
    )

    cube_transform = FrameTransformerCfg(
        prim_path="{ENV_REGEX_NS}/Robot/base",
        target_frames=[FrameTransformerCfg.FrameCfg(prim_path="{ENV_REGEX_NS}/Cube")],
        debug_vis=False,
    )

We can now run the scene and query the sensor for data

def run_simulator(sim: sim_utils.SimulationContext, scene: InteractiveScene):
  .
  .
  .
  # Simulate physics
  while simulation_app.is_running():
    .
    .
    .

    # print information from the sensors
    print("-------------------------------")
    print(scene["specific_transforms"])
    print("relative transforms:", scene["specific_transforms"].data.target_pos_source)
    print("relative orientations:", scene["specific_transforms"].data.target_quat_source)
    print("-------------------------------")
    print(scene["cube_transform"])
    print("relative transform:", scene["cube_transform"].data.target_pos_source)
    print("-------------------------------")
    print(scene["robot_transforms"])
    print("relative transforms:", scene["robot_transforms"].data.target_pos_source)

Let’s take a look at the result for tracking specific objects. First, we can take a look at the data coming from the sensors on the feet

-------------------------------
FrameTransformer @ '/World/envs/env_.*/Robot/base':
        tracked body frames: ['base', 'LF_FOOT', 'RF_FOOT']
        number of envs: 1
        source body frame: base
        target frames (count: ['LF_FOOT', 'RF_FOOT']): 2

relative transforms: tensor([[[ 0.4658,  0.3085, -0.4840],
        [ 0.4487, -0.2959, -0.4828]]], device='cuda:0')
relative orientations: tensor([[[ 0.9623,  0.0072, -0.2717, -0.0020],
        [ 0.9639,  0.0052, -0.2663, -0.0014]]], device='cuda:0')
The frame transformer visualizer

By activating the visualizer, we can see that the frames of the feet are rotated “upward” slightly. We can also see the explicit relative positions and rotations by querying the sensor for data, which returns these values as a list with the same order as the tracked frames. This becomes even more apparent if we examine the transforms specified by regex.

-------------------------------
FrameTransformer @ '/World/envs/env_.*/Robot/base':
        tracked body frames: ['base', 'LF_FOOT', 'LF_HIP', 'LF_SHANK', 'LF_THIGH', 'LH_FOOT', 'LH_HIP', 'LH_SHANK', 'LH_THIGH', 'RF_FOOT', 'RF_HIP', 'RF_SHANK', 'RF_THIGH', 'RH_FOOT', 'RH_HIP', 'RH_SHANK', 'RH_THIGH', 'base']
        number of envs: 1
        source body frame: base
        target frames (count: ['LF_FOOT', 'LF_HIP', 'LF_SHANK', 'LF_THIGH', 'LH_FOOT', 'LH_HIP', 'LH_SHANK', 'LH_THIGH', 'RF_FOOT', 'RF_HIP', 'RF_SHANK', 'RF_THIGH', 'RH_FOOT', 'RH_HIP', 'RH_SHANK', 'RH_THIGH', 'base']): 17

relative transforms: tensor([[[ 4.6581e-01,  3.0846e-01, -4.8398e-01],
        [ 2.9990e-01,  1.0400e-01, -1.7062e-09],
        [ 2.1409e-01,  2.9177e-01, -2.4214e-01],
        [ 3.5980e-01,  1.8780e-01,  1.2608e-03],
        [-4.8813e-01,  3.0973e-01, -4.5927e-01],
        [-2.9990e-01,  1.0400e-01,  2.7044e-09],
        [-2.1495e-01,  2.9264e-01, -2.4198e-01],
        [-3.5980e-01,  1.8780e-01,  1.5582e-03],
        [ 4.4871e-01, -2.9593e-01, -4.8277e-01],
        [ 2.9990e-01, -1.0400e-01, -2.7057e-09],
        [ 1.9971e-01, -2.8554e-01, -2.3778e-01],
        [ 3.5980e-01, -1.8781e-01, -9.1049e-04],
        [-5.0090e-01, -2.9095e-01, -4.5746e-01],
        [-2.9990e-01, -1.0400e-01,  6.3592e-09],
        [-2.1860e-01, -2.8251e-01, -2.5163e-01],
        [-3.5980e-01, -1.8779e-01, -1.8792e-03],
        [ 0.0000e+00,  0.0000e+00,  0.0000e+00]]], device='cuda:0')

Here, the sensor is tracking all rigid body children of Robot/base, but this expression is inclusive, meaning that the source body itself is also a target. This can be seen both by examining the source and target list, where base appears twice, and also in the returned data, where the sensor returns the relative transform to itself, (0, 0, 0).

Code for frame_transformer_sensor.py
  1# Copyright (c) 2022-2025, The Isaac Lab Project Developers (https://github.com/isaac-sim/IsaacLab/blob/main/CONTRIBUTORS.md).
  2# All rights reserved.
  3#
  4# SPDX-License-Identifier: BSD-3-Clause
  5
  6# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
  7# All rights reserved.
  8#
  9# SPDX-License-Identifier: BSD-3-Clause
 10
 11import argparse
 12
 13from isaaclab.app import AppLauncher
 14
 15# add argparse arguments
 16parser = argparse.ArgumentParser(description="Example on using the frame transformer sensor.")
 17parser.add_argument("--num_envs", type=int, default=1, help="Number of environments to spawn.")
 18# append AppLauncher cli args
 19AppLauncher.add_app_launcher_args(parser)
 20# parse the arguments
 21args_cli = parser.parse_args()
 22
 23# launch omniverse app
 24app_launcher = AppLauncher(args_cli)
 25simulation_app = app_launcher.app
 26
 27"""Rest everything follows."""
 28
 29import torch
 30
 31import isaaclab.sim as sim_utils
 32from isaaclab.assets import AssetBaseCfg, RigidObjectCfg
 33from isaaclab.scene import InteractiveScene, InteractiveSceneCfg
 34from isaaclab.sensors import FrameTransformerCfg
 35from isaaclab.utils import configclass
 36
 37##
 38# Pre-defined configs
 39##
 40from isaaclab_assets.robots.anymal import ANYMAL_C_CFG  # isort: skip
 41
 42
 43@configclass
 44class FrameTransformerSensorSceneCfg(InteractiveSceneCfg):
 45    """Design the scene with sensors on the robot."""
 46
 47    # ground plane
 48    ground = AssetBaseCfg(prim_path="/World/defaultGroundPlane", spawn=sim_utils.GroundPlaneCfg())
 49
 50    # lights
 51    dome_light = AssetBaseCfg(
 52        prim_path="/World/Light", spawn=sim_utils.DomeLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75))
 53    )
 54
 55    # robot
 56    robot = ANYMAL_C_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot")
 57
 58    # Rigid Object
 59    cube = RigidObjectCfg(
 60        prim_path="{ENV_REGEX_NS}/Cube",
 61        spawn=sim_utils.CuboidCfg(
 62            size=(1, 1, 1),
 63            rigid_props=sim_utils.RigidBodyPropertiesCfg(),
 64            mass_props=sim_utils.MassPropertiesCfg(mass=100.0),
 65            collision_props=sim_utils.CollisionPropertiesCfg(),
 66            physics_material=sim_utils.RigidBodyMaterialCfg(static_friction=1.0),
 67            visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 1.0, 0.0), metallic=0.2),
 68        ),
 69        init_state=RigidObjectCfg.InitialStateCfg(pos=(5, 0, 0.5)),
 70    )
 71
 72    specific_transforms = FrameTransformerCfg(
 73        prim_path="{ENV_REGEX_NS}/Robot/base",
 74        target_frames=[
 75            FrameTransformerCfg.FrameCfg(prim_path="{ENV_REGEX_NS}/Robot/LF_FOOT"),
 76            FrameTransformerCfg.FrameCfg(prim_path="{ENV_REGEX_NS}/Robot/RF_FOOT"),
 77        ],
 78        debug_vis=True,
 79    )
 80
 81    cube_transform = FrameTransformerCfg(
 82        prim_path="{ENV_REGEX_NS}/Robot/base",
 83        target_frames=[FrameTransformerCfg.FrameCfg(prim_path="{ENV_REGEX_NS}/Cube")],
 84        debug_vis=False,
 85    )
 86
 87    robot_transforms = FrameTransformerCfg(
 88        prim_path="{ENV_REGEX_NS}/Robot/base",
 89        target_frames=[FrameTransformerCfg.FrameCfg(prim_path="{ENV_REGEX_NS}/Robot/.*")],
 90        debug_vis=False,
 91    )
 92
 93
 94def run_simulator(sim: sim_utils.SimulationContext, scene: InteractiveScene):
 95    """Run the simulator."""
 96    # Define simulation stepping
 97    sim_dt = sim.get_physics_dt()
 98    sim_time = 0.0
 99    count = 0
100
101    # Simulate physics
102    while simulation_app.is_running():
103
104        if count % 500 == 0:
105            # reset counter
106            count = 0
107            # reset the scene entities
108            # root state
109            # we offset the root state by the origin since the states are written in simulation world frame
110            # if this is not done, then the robots will be spawned at the (0, 0, 0) of the simulation world
111            root_state = scene["robot"].data.default_root_state.clone()
112            root_state[:, :3] += scene.env_origins
113            scene["robot"].write_root_pose_to_sim(root_state[:, :7])
114            scene["robot"].write_root_velocity_to_sim(root_state[:, 7:])
115            # set joint positions with some noise
116            joint_pos, joint_vel = (
117                scene["robot"].data.default_joint_pos.clone(),
118                scene["robot"].data.default_joint_vel.clone(),
119            )
120            joint_pos += torch.rand_like(joint_pos) * 0.1
121            scene["robot"].write_joint_state_to_sim(joint_pos, joint_vel)
122            # clear internal buffers
123            scene.reset()
124            print("[INFO]: Resetting robot state...")
125        # Apply default actions to the robot
126        # -- generate actions/commands
127        targets = scene["robot"].data.default_joint_pos
128        # -- apply action to the robot
129        scene["robot"].set_joint_position_target(targets)
130        # -- write data to sim
131        scene.write_data_to_sim()
132        # perform step
133        sim.step()
134        # update sim-time
135        sim_time += sim_dt
136        count += 1
137        # update buffers
138        scene.update(sim_dt)
139
140        # print information from the sensors
141        print("-------------------------------")
142        print(scene["specific_transforms"])
143        print("relative transforms:", scene["specific_transforms"].data.target_pos_source)
144        print("relative orientations:", scene["specific_transforms"].data.target_quat_source)
145        print("-------------------------------")
146        print(scene["cube_transform"])
147        print("relative transform:", scene["cube_transform"].data.target_pos_source)
148        print("-------------------------------")
149        print(scene["robot_transforms"])
150        print("relative transforms:", scene["robot_transforms"].data.target_pos_source)
151
152
153def main():
154    """Main function."""
155
156    # Initialize the simulation context
157    sim_cfg = sim_utils.SimulationCfg(dt=0.005, device=args_cli.device)
158    sim = sim_utils.SimulationContext(sim_cfg)
159    # Set main camera
160    sim.set_camera_view(eye=[3.5, 3.5, 3.5], target=[0.0, 0.0, 0.0])
161    # design scene
162    scene_cfg = FrameTransformerSensorSceneCfg(num_envs=args_cli.num_envs, env_spacing=2.0)
163    scene = InteractiveScene(scene_cfg)
164    # Play the simulator
165    sim.reset()
166    # Now we are ready!
167    print("[INFO]: Setup complete...")
168    # Run the simulator
169    run_simulator(sim, scene)
170
171
172if __name__ == "__main__":
173    # run the main function
174    main()
175    # close sim app
176    simulation_app.close()