Configuring an RL Agent

Configuring an RL Agent#

In the previous tutorial, we saw how to train an RL agent to solve the cartpole balancing task using the Stable-Baselines3 library. In this tutorial, we will see how to configure the training process to use different RL libraries and different training algorithms.

In the directory scripts/reinforcement_learning, you will find the scripts for different RL libraries. These are organized into subdirectories named after the library name. Each subdirectory contains the training and playing scripts for the library.

To configure a learning library with a specific task, you need to create a configuration file for the learning agent. This configuration file is used to create an instance of the learning agent and is used to configure the training process. Similar to the environment registration shown in the Registering an Environment tutorial, you can register the learning agent with the gymnasium.register method.

The Code#

As an example, we will look at the configuration included for the task Isaac-Cartpole-v0 in the isaaclab_tasks package. This is the same task that we used in the Training with an RL Agent tutorial.

gym.register(
    id="Isaac-Cartpole-v0",
    entry_point="isaaclab.envs:ManagerBasedRLEnv",
    disable_env_checker=True,
    kwargs={
        "env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
        "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml",
        "rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerCfg",
        "rsl_rl_with_symmetry_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerWithSymmetryCfg",
        "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml",
        "sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml",
    },

The Code Explained#

Under the attribute kwargs, we can see the configuration for the different learning libraries. The key is the name of the library and the value is the path to the configuration instance. This configuration instance can be a string, a class, or an instance of the class. For example, the value of the key "rl_games_cfg_entry_point" is a string that points to the configuration YAML file for the RL-Games library. Meanwhile, the value of the key "rsl_rl_cfg_entry_point" points to the configuration class for the RSL-RL library.

The pattern used for specifying an agent configuration class follows closely to that used for specifying the environment configuration entry point. This means that while the following are equivalent:

Specifying the configuration entry point as a string
from . import agents

gym.register(
   id="Isaac-Cartpole-v0",
   entry_point="isaaclab.envs:ManagerBasedRLEnv",
   disable_env_checker=True,
   kwargs={
      "env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
      "rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerCfg",
   },
)
Specifying the configuration entry point as a class
from . import agents

gym.register(
   id="Isaac-Cartpole-v0",
   entry_point="isaaclab.envs:ManagerBasedRLEnv",
   disable_env_checker=True,
   kwargs={
      "env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
      "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.CartpolePPORunnerCfg,
   },
)

The first code block is the preferred way to specify the configuration entry point. The second code block is equivalent to the first one, but it leads to import of the configuration class which slows down the import time. This is why we recommend using strings for the configuration entry point.

All the scripts in the scripts/reinforcement_learning directory are configured by default to read the <library_name>_cfg_entry_point from the kwargs dictionary to retrieve the configuration instance.

For instance, the following code block shows how the train.py script reads the configuration instance for the Stable-Baselines3 library:

Code for train.py with SB3
  1# Copyright (c) 2022-2025, The Isaac Lab Project Developers (https://github.com/isaac-sim/IsaacLab/blob/main/CONTRIBUTORS.md).
  2# All rights reserved.
  3#
  4# SPDX-License-Identifier: BSD-3-Clause
  5
  6
  7"""Script to train RL agent with Stable Baselines3."""
  8
  9"""Launch Isaac Sim Simulator first."""
 10
 11import argparse
 12import contextlib
 13import signal
 14import sys
 15from pathlib import Path
 16
 17from isaaclab.app import AppLauncher
 18
 19# add argparse arguments
 20parser = argparse.ArgumentParser(description="Train an RL agent with Stable-Baselines3.")
 21parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
 22parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
 23parser.add_argument("--video_interval", type=int, default=2000, help="Interval between video recordings (in steps).")
 24parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
 25parser.add_argument("--task", type=str, default=None, help="Name of the task.")
 26parser.add_argument(
 27    "--agent", type=str, default="sb3_cfg_entry_point", help="Name of the RL agent configuration entry point."
 28)
 29parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment")
 30parser.add_argument("--log_interval", type=int, default=100_000, help="Log data every n timesteps.")
 31parser.add_argument("--checkpoint", type=str, default=None, help="Continue the training from checkpoint.")
 32parser.add_argument("--max_iterations", type=int, default=None, help="RL Policy training iterations.")
 33parser.add_argument("--export_io_descriptors", action="store_true", default=False, help="Export IO descriptors.")
 34parser.add_argument(
 35    "--keep_all_info",
 36    action="store_true",
 37    default=False,
 38    help="Use a slower SB3 wrapper but keep all the extra training info.",
 39)
 40# append AppLauncher cli args
 41AppLauncher.add_app_launcher_args(parser)
 42# parse the arguments
 43args_cli, hydra_args = parser.parse_known_args()
 44# always enable cameras to record video
 45if args_cli.video:
 46    args_cli.enable_cameras = True
 47
 48# clear out sys.argv for Hydra
 49sys.argv = [sys.argv[0]] + hydra_args
 50
 51# launch omniverse app
 52app_launcher = AppLauncher(args_cli)
 53simulation_app = app_launcher.app
 54
 55
 56def cleanup_pbar(*args):
 57    """
 58    A small helper to stop training and
 59    cleanup progress bar properly on ctrl+c
 60    """
 61    import gc
 62
 63    tqdm_objects = [obj for obj in gc.get_objects() if "tqdm" in type(obj).__name__]
 64    for tqdm_object in tqdm_objects:
 65        if "tqdm_rich" in type(tqdm_object).__name__:
 66            tqdm_object.close()
 67    raise KeyboardInterrupt
 68
 69
 70# disable KeyboardInterrupt override
 71signal.signal(signal.SIGINT, cleanup_pbar)
 72
 73"""Rest everything follows."""
 74
 75import gymnasium as gym
 76import numpy as np
 77import os
 78import random
 79from datetime import datetime
 80
 81import omni
 82from stable_baselines3 import PPO
 83from stable_baselines3.common.callbacks import CheckpointCallback, LogEveryNTimesteps
 84from stable_baselines3.common.vec_env import VecNormalize
 85
 86from isaaclab.envs import (
 87    DirectMARLEnv,
 88    DirectMARLEnvCfg,
 89    DirectRLEnvCfg,
 90    ManagerBasedRLEnvCfg,
 91    multi_agent_to_single_agent,
 92)
 93from isaaclab.utils.dict import print_dict
 94from isaaclab.utils.io import dump_pickle, dump_yaml
 95
 96from isaaclab_rl.sb3 import Sb3VecEnvWrapper, process_sb3_cfg
 97
 98import isaaclab_tasks  # noqa: F401
 99from isaaclab_tasks.utils.hydra import hydra_task_config
100
101# PLACEHOLDER: Extension template (do not remove this comment)
102
103
104@hydra_task_config(args_cli.task, args_cli.agent)
105def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg | DirectMARLEnvCfg, agent_cfg: dict):
106    """Train with stable-baselines agent."""
107    # randomly sample a seed if seed = -1
108    if args_cli.seed == -1:
109        args_cli.seed = random.randint(0, 10000)
110
111    # override configurations with non-hydra CLI arguments
112    env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs
113    agent_cfg["seed"] = args_cli.seed if args_cli.seed is not None else agent_cfg["seed"]
114    # max iterations for training
115    if args_cli.max_iterations is not None:
116        agent_cfg["n_timesteps"] = args_cli.max_iterations * agent_cfg["n_steps"] * env_cfg.scene.num_envs
117
118    # set the environment seed
119    # note: certain randomizations occur in the environment initialization so we set the seed here
120    env_cfg.seed = agent_cfg["seed"]
121    env_cfg.sim.device = args_cli.device if args_cli.device is not None else env_cfg.sim.device
122
123    # directory for logging into
124    run_info = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
125    log_root_path = os.path.abspath(os.path.join("logs", "sb3", args_cli.task))
126    print(f"[INFO] Logging experiment in directory: {log_root_path}")
127    # The Ray Tune workflow extracts experiment name using the logging line below, hence, do not change it (see PR #2346, comment-2819298849)
128    print(f"Exact experiment name requested from command line: {run_info}")
129    log_dir = os.path.join(log_root_path, run_info)
130    # dump the configuration into log-directory
131    dump_yaml(os.path.join(log_dir, "params", "env.yaml"), env_cfg)
132    dump_yaml(os.path.join(log_dir, "params", "agent.yaml"), agent_cfg)
133    dump_pickle(os.path.join(log_dir, "params", "env.pkl"), env_cfg)
134    dump_pickle(os.path.join(log_dir, "params", "agent.pkl"), agent_cfg)
135
136    # save command used to run the script
137    command = " ".join(sys.orig_argv)
138    (Path(log_dir) / "command.txt").write_text(command)
139
140    # post-process agent configuration
141    agent_cfg = process_sb3_cfg(agent_cfg, env_cfg.scene.num_envs)
142    # read configurations about the agent-training
143    policy_arch = agent_cfg.pop("policy")
144    n_timesteps = agent_cfg.pop("n_timesteps")
145
146    # set the IO descriptors export flag if requested
147    if isinstance(env_cfg, ManagerBasedRLEnvCfg):
148        env_cfg.export_io_descriptors = args_cli.export_io_descriptors
149    else:
150        omni.log.warn(
151            "IO descriptors are only supported for manager based RL environments. No IO descriptors will be exported."
152        )
153
154    # set the log directory for the environment (works for all environment types)
155    env_cfg.log_dir = log_dir
156
157    # create isaac environment
158    env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
159
160    # convert to single-agent instance if required by the RL algorithm
161    if isinstance(env.unwrapped, DirectMARLEnv):
162        env = multi_agent_to_single_agent(env)
163
164    # wrap for video recording
165    if args_cli.video:
166        video_kwargs = {
167            "video_folder": os.path.join(log_dir, "videos", "train"),
168            "step_trigger": lambda step: step % args_cli.video_interval == 0,
169            "video_length": args_cli.video_length,
170            "disable_logger": True,
171        }
172        print("[INFO] Recording videos during training.")
173        print_dict(video_kwargs, nesting=4)
174        env = gym.wrappers.RecordVideo(env, **video_kwargs)
175
176    # wrap around environment for stable baselines
177    env = Sb3VecEnvWrapper(env, fast_variant=not args_cli.keep_all_info)
178
179    norm_keys = {"normalize_input", "normalize_value", "clip_obs"}
180    norm_args = {}
181    for key in norm_keys:
182        if key in agent_cfg:
183            norm_args[key] = agent_cfg.pop(key)
184
185    if norm_args and norm_args.get("normalize_input"):
186        print(f"Normalizing input, {norm_args=}")
187        env = VecNormalize(
188            env,
189            training=True,
190            norm_obs=norm_args["normalize_input"],
191            norm_reward=norm_args.get("normalize_value", False),
192            clip_obs=norm_args.get("clip_obs", 100.0),
193            gamma=agent_cfg["gamma"],
194            clip_reward=np.inf,
195        )
196
197    # create agent from stable baselines
198    agent = PPO(policy_arch, env, verbose=1, tensorboard_log=log_dir, **agent_cfg)
199    if args_cli.checkpoint is not None:
200        agent = agent.load(args_cli.checkpoint, env, print_system_info=True)
201
202    # callbacks for agent
203    checkpoint_callback = CheckpointCallback(save_freq=1000, save_path=log_dir, name_prefix="model", verbose=2)
204    callbacks = [checkpoint_callback, LogEveryNTimesteps(n_steps=args_cli.log_interval)]
205
206    # train the agent
207    with contextlib.suppress(KeyboardInterrupt):
208        agent.learn(
209            total_timesteps=n_timesteps,
210            callback=callbacks,
211            progress_bar=True,
212            log_interval=None,
213        )
214    # save the final model
215    agent.save(os.path.join(log_dir, "model"))
216    print("Saving to:")
217    print(os.path.join(log_dir, "model.zip"))
218
219    if isinstance(env, VecNormalize):
220        print("Saving normalization")
221        env.save(os.path.join(log_dir, "model_vecnormalize.pkl"))
222
223    # close the simulator
224    env.close()
225
226
227if __name__ == "__main__":
228    # run the main function
229    main()
230    # close sim app
231    simulation_app.close()

The argument --agent is used to specify the learning library to use. This is used to retrieve the configuration instance from the kwargs dictionary. You can manually specify alternate configuration instances by passing the --agent argument.

The Code Execution#

Since for the cartpole balancing task, RSL-RL library offers two configuration instances, we can use the --agent argument to specify the configuration instance to use.

  • Training with the standard PPO configuration:

    # standard PPO training
    ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \
      --run_name ppo
    
  • Training with the PPO configuration with symmetry augmentation:

    # PPO training with symmetry augmentation
    ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \
      --agent rsl_rl_with_symmetry_cfg_entry_point \
      --run_name ppo_with_symmetry_data_augmentation
    
    # you can use hydra to disable symmetry augmentation but enable mirror loss computation
    ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \
      --agent rsl_rl_with_symmetry_cfg_entry_point \
      --run_name ppo_without_symmetry_data_augmentation \
      agent.algorithm.symmetry_cfg.use_data_augmentation=false
    

The --run_name argument is used to specify the name of the run. This is used to create a directory for the run in the logs/rsl_rl/cartpole directory.