Configuring an RL Agent

Configuring an RL Agent#

In the previous tutorial, we saw how to train an RL agent to solve the cartpole balancing task using the Stable-Baselines3 library. In this tutorial, we will see how to configure the training process to use different RL libraries and different training algorithms.

In the directory scripts/reinforcement_learning, you will find the scripts for different RL libraries. These are organized into subdirectories named after the library name. Each subdirectory contains the training and playing scripts for the library.

To configure a learning library with a specific task, you need to create a configuration file for the learning agent. This configuration file is used to create an instance of the learning agent and is used to configure the training process. Similar to the environment registration shown in the Registering an Environment tutorial, you can register the learning agent with the gymnasium.register method.

The Code#

As an example, we will look at the configuration included for the task Isaac-Cartpole-v0 in the isaaclab_tasks package. This is the same task that we used in the Training with an RL Agent tutorial.

gym.register(
    id="Isaac-Cartpole-v0",
    entry_point="isaaclab.envs:ManagerBasedRLEnv",
    disable_env_checker=True,
    kwargs={
        "env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
        "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml",
        "rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerCfg",
        "rsl_rl_with_symmetry_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerWithSymmetryCfg",
        "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml",
        "sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml",
    },

The Code Explained#

Under the attribute kwargs, we can see the configuration for the different learning libraries. The key is the name of the library and the value is the path to the configuration instance. This configuration instance can be a string, a class, or an instance of the class. For example, the value of the key "rl_games_cfg_entry_point" is a string that points to the configuration YAML file for the RL-Games library. Meanwhile, the value of the key "rsl_rl_cfg_entry_point" points to the configuration class for the RSL-RL library.

The pattern used for specifying an agent configuration class follows closely to that used for specifying the environment configuration entry point. This means that while the following are equivalent:

Specifying the configuration entry point as a string
from . import agents

gym.register(
   id="Isaac-Cartpole-v0",
   entry_point="isaaclab.envs:ManagerBasedRLEnv",
   disable_env_checker=True,
   kwargs={
      "env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
      "rsl_rl_cfg_entry_point": f"{agents.__name__}.rsl_rl_ppo_cfg:CartpolePPORunnerCfg",
   },
)
Specifying the configuration entry point as a class
from . import agents

gym.register(
   id="Isaac-Cartpole-v0",
   entry_point="isaaclab.envs:ManagerBasedRLEnv",
   disable_env_checker=True,
   kwargs={
      "env_cfg_entry_point": f"{__name__}.cartpole_env_cfg:CartpoleEnvCfg",
      "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.CartpolePPORunnerCfg,
   },
)

The first code block is the preferred way to specify the configuration entry point. The second code block is equivalent to the first one, but it leads to import of the configuration class which slows down the import time. This is why we recommend using strings for the configuration entry point.

All the scripts in the scripts/reinforcement_learning directory are configured by default to read the <library_name>_cfg_entry_point from the kwargs dictionary to retrieve the configuration instance.

For instance, the following code block shows how the train.py script reads the configuration instance for the Stable-Baselines3 library:

Code for train.py with SB3
  1# Copyright (c) 2022-2025, The Isaac Lab Project Developers (https://github.com/isaac-sim/IsaacLab/blob/main/CONTRIBUTORS.md).
  2# All rights reserved.
  3#
  4# SPDX-License-Identifier: BSD-3-Clause
  5
  6
  7"""Script to train RL agent with Stable Baselines3."""
  8
  9"""Launch Isaac Sim Simulator first."""
 10
 11import argparse
 12import contextlib
 13import signal
 14import sys
 15from pathlib import Path
 16
 17from isaaclab.app import AppLauncher
 18
 19# add argparse arguments
 20parser = argparse.ArgumentParser(description="Train an RL agent with Stable-Baselines3.")
 21parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
 22parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
 23parser.add_argument("--video_interval", type=int, default=2000, help="Interval between video recordings (in steps).")
 24parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
 25parser.add_argument("--task", type=str, default=None, help="Name of the task.")
 26parser.add_argument(
 27    "--agent", type=str, default="sb3_cfg_entry_point", help="Name of the RL agent configuration entry point."
 28)
 29parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment")
 30parser.add_argument("--log_interval", type=int, default=100_000, help="Log data every n timesteps.")
 31parser.add_argument("--checkpoint", type=str, default=None, help="Continue the training from checkpoint.")
 32parser.add_argument("--max_iterations", type=int, default=None, help="RL Policy training iterations.")
 33parser.add_argument(
 34    "--keep_all_info",
 35    action="store_true",
 36    default=False,
 37    help="Use a slower SB3 wrapper but keep all the extra training info.",
 38)
 39# append AppLauncher cli args
 40AppLauncher.add_app_launcher_args(parser)
 41# parse the arguments
 42args_cli, hydra_args = parser.parse_known_args()
 43# always enable cameras to record video
 44if args_cli.video:
 45    args_cli.enable_cameras = True
 46
 47# clear out sys.argv for Hydra
 48sys.argv = [sys.argv[0]] + hydra_args
 49
 50# launch omniverse app
 51app_launcher = AppLauncher(args_cli)
 52simulation_app = app_launcher.app
 53
 54
 55def cleanup_pbar(*args):
 56    """
 57    A small helper to stop training and
 58    cleanup progress bar properly on ctrl+c
 59    """
 60    import gc
 61
 62    tqdm_objects = [obj for obj in gc.get_objects() if "tqdm" in type(obj).__name__]
 63    for tqdm_object in tqdm_objects:
 64        if "tqdm_rich" in type(tqdm_object).__name__:
 65            tqdm_object.close()
 66    raise KeyboardInterrupt
 67
 68
 69# disable KeyboardInterrupt override
 70signal.signal(signal.SIGINT, cleanup_pbar)
 71
 72"""Rest everything follows."""
 73
 74import gymnasium as gym
 75import numpy as np
 76import os
 77import random
 78from datetime import datetime
 79
 80from stable_baselines3 import PPO
 81from stable_baselines3.common.callbacks import CheckpointCallback, LogEveryNTimesteps
 82from stable_baselines3.common.vec_env import VecNormalize
 83
 84from isaaclab.envs import (
 85    DirectMARLEnv,
 86    DirectMARLEnvCfg,
 87    DirectRLEnvCfg,
 88    ManagerBasedRLEnvCfg,
 89    multi_agent_to_single_agent,
 90)
 91from isaaclab.utils.dict import print_dict
 92from isaaclab.utils.io import dump_pickle, dump_yaml
 93
 94from isaaclab_rl.sb3 import Sb3VecEnvWrapper, process_sb3_cfg
 95
 96import isaaclab_tasks  # noqa: F401
 97from isaaclab_tasks.utils.hydra import hydra_task_config
 98
 99# PLACEHOLDER: Extension template (do not remove this comment)
100
101
102@hydra_task_config(args_cli.task, args_cli.agent)
103def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg | DirectMARLEnvCfg, agent_cfg: dict):
104    """Train with stable-baselines agent."""
105    # randomly sample a seed if seed = -1
106    if args_cli.seed == -1:
107        args_cli.seed = random.randint(0, 10000)
108
109    # override configurations with non-hydra CLI arguments
110    env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs
111    agent_cfg["seed"] = args_cli.seed if args_cli.seed is not None else agent_cfg["seed"]
112    # max iterations for training
113    if args_cli.max_iterations is not None:
114        agent_cfg["n_timesteps"] = args_cli.max_iterations * agent_cfg["n_steps"] * env_cfg.scene.num_envs
115
116    # set the environment seed
117    # note: certain randomizations occur in the environment initialization so we set the seed here
118    env_cfg.seed = agent_cfg["seed"]
119    env_cfg.sim.device = args_cli.device if args_cli.device is not None else env_cfg.sim.device
120
121    # directory for logging into
122    run_info = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
123    log_root_path = os.path.abspath(os.path.join("logs", "sb3", args_cli.task))
124    print(f"[INFO] Logging experiment in directory: {log_root_path}")
125    # The Ray Tune workflow extracts experiment name using the logging line below, hence, do not change it (see PR #2346, comment-2819298849)
126    print(f"Exact experiment name requested from command line: {run_info}")
127    log_dir = os.path.join(log_root_path, run_info)
128    # dump the configuration into log-directory
129    dump_yaml(os.path.join(log_dir, "params", "env.yaml"), env_cfg)
130    dump_yaml(os.path.join(log_dir, "params", "agent.yaml"), agent_cfg)
131    dump_pickle(os.path.join(log_dir, "params", "env.pkl"), env_cfg)
132    dump_pickle(os.path.join(log_dir, "params", "agent.pkl"), agent_cfg)
133
134    # save command used to run the script
135    command = " ".join(sys.orig_argv)
136    (Path(log_dir) / "command.txt").write_text(command)
137
138    # post-process agent configuration
139    agent_cfg = process_sb3_cfg(agent_cfg, env_cfg.scene.num_envs)
140    # read configurations about the agent-training
141    policy_arch = agent_cfg.pop("policy")
142    n_timesteps = agent_cfg.pop("n_timesteps")
143
144    # create isaac environment
145    env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
146
147    # convert to single-agent instance if required by the RL algorithm
148    if isinstance(env.unwrapped, DirectMARLEnv):
149        env = multi_agent_to_single_agent(env)
150
151    # wrap for video recording
152    if args_cli.video:
153        video_kwargs = {
154            "video_folder": os.path.join(log_dir, "videos", "train"),
155            "step_trigger": lambda step: step % args_cli.video_interval == 0,
156            "video_length": args_cli.video_length,
157            "disable_logger": True,
158        }
159        print("[INFO] Recording videos during training.")
160        print_dict(video_kwargs, nesting=4)
161        env = gym.wrappers.RecordVideo(env, **video_kwargs)
162
163    # wrap around environment for stable baselines
164    env = Sb3VecEnvWrapper(env, fast_variant=not args_cli.keep_all_info)
165
166    norm_keys = {"normalize_input", "normalize_value", "clip_obs"}
167    norm_args = {}
168    for key in norm_keys:
169        if key in agent_cfg:
170            norm_args[key] = agent_cfg.pop(key)
171
172    if norm_args and norm_args.get("normalize_input"):
173        print(f"Normalizing input, {norm_args=}")
174        env = VecNormalize(
175            env,
176            training=True,
177            norm_obs=norm_args["normalize_input"],
178            norm_reward=norm_args.get("normalize_value", False),
179            clip_obs=norm_args.get("clip_obs", 100.0),
180            gamma=agent_cfg["gamma"],
181            clip_reward=np.inf,
182        )
183
184    # create agent from stable baselines
185    agent = PPO(policy_arch, env, verbose=1, tensorboard_log=log_dir, **agent_cfg)
186    if args_cli.checkpoint is not None:
187        agent = agent.load(args_cli.checkpoint, env, print_system_info=True)
188
189    # callbacks for agent
190    checkpoint_callback = CheckpointCallback(save_freq=1000, save_path=log_dir, name_prefix="model", verbose=2)
191    callbacks = [checkpoint_callback, LogEveryNTimesteps(n_steps=args_cli.log_interval)]
192
193    # train the agent
194    with contextlib.suppress(KeyboardInterrupt):
195        agent.learn(
196            total_timesteps=n_timesteps,
197            callback=callbacks,
198            progress_bar=True,
199            log_interval=None,
200        )
201    # save the final model
202    agent.save(os.path.join(log_dir, "model"))
203    print("Saving to:")
204    print(os.path.join(log_dir, "model.zip"))
205
206    if isinstance(env, VecNormalize):
207        print("Saving normalization")
208        env.save(os.path.join(log_dir, "model_vecnormalize.pkl"))
209
210    # close the simulator
211    env.close()
212
213
214if __name__ == "__main__":
215    # run the main function
216    main()
217    # close sim app
218    simulation_app.close()

The argument --agent is used to specify the learning library to use. This is used to retrieve the configuration instance from the kwargs dictionary. You can manually specify alternate configuration instances by passing the --agent argument.

The Code Execution#

Since for the cartpole balancing task, RSL-RL library offers two configuration instances, we can use the --agent argument to specify the configuration instance to use.

  • Training with the standard PPO configuration:

    # standard PPO training
    ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \
      --run_name ppo
    
  • Training with the PPO configuration with symmetry augmentation:

    # PPO training with symmetry augmentation
    ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \
      --agent rsl_rl_with_symmetry_cfg_entry_point \
      --run_name ppo_with_symmetry_data_augmentation
    
    # you can use hydra to disable symmetry augmentation but enable mirror loss computation
    ./isaaclab.sh -p scripts/reinforcement_learning/rsl_rl/train.py --task Isaac-Cartpole-v0 --headless \
      --agent rsl_rl_with_symmetry_cfg_entry_point \
      --run_name ppo_without_symmetry_data_augmentation \
      agent.algorithm.symmetry_cfg.use_data_augmentation=false
    

The --run_name argument is used to specify the name of the run. This is used to create a directory for the run in the logs/rsl_rl/cartpole directory.