Training with an RL Agent#
In the previous tutorials, we covered how to define an RL task environment, register
it into the gym registry, and interact with it using a random agent. We now move
on to the next step: training an RL agent to solve the task.
Although the envs.ManagerBasedRLEnv conforms to the gymnasium.Env interface,
it is not exactly a gym environment. The input and outputs of the environment are
not numpy arrays, but rather based on torch tensors with the first dimension being the
number of environment instances.
Additionally, most RL libraries expect their own variation of an environment interface.
For example, Stable-Baselines3 expects the environment to conform to its
VecEnv API which expects a list of numpy arrays instead of a single tensor. Similarly,
RSL-RL, RL-Games and SKRL expect a different interface. Since there is no one-size-fits-all
solution, we do not base the envs.ManagerBasedRLEnv on any particular learning library.
Instead, we implement wrappers to convert the environment into the expected interface.
These are specified in the isaaclab_rl module.
In this tutorial, we will use Stable-Baselines3 to train an RL agent to solve the cartpole balancing task.
Caution
Wrapping the environment with the respective learning framework’s wrapper should happen in the end,
i.e. after all other wrappers have been applied. This is because the learning framework’s wrapper
modifies the interpretation of environment’s APIs which may no longer be compatible with gymnasium.Env.
The Code#
For this tutorial, we use the training script from Stable-Baselines3 workflow in the
scripts/reinforcement_learning/sb3 directory.
Code for train.py
1# Copyright (c) 2022-2025, The Isaac Lab Project Developers (https://github.com/isaac-sim/IsaacLab/blob/main/CONTRIBUTORS.md).
2# All rights reserved.
3#
4# SPDX-License-Identifier: BSD-3-Clause
5
6
7"""Script to train RL agent with Stable Baselines3."""
8
9"""Launch Isaac Sim Simulator first."""
10
11import argparse
12import contextlib
13import signal
14import sys
15from pathlib import Path
16
17from isaaclab.app import AppLauncher
18
19# add argparse arguments
20parser = argparse.ArgumentParser(description="Train an RL agent with Stable-Baselines3.")
21parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
22parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
23parser.add_argument("--video_interval", type=int, default=2000, help="Interval between video recordings (in steps).")
24parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
25parser.add_argument("--task", type=str, default=None, help="Name of the task.")
26parser.add_argument(
27 "--agent", type=str, default="sb3_cfg_entry_point", help="Name of the RL agent configuration entry point."
28)
29parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment")
30parser.add_argument("--log_interval", type=int, default=100_000, help="Log data every n timesteps.")
31parser.add_argument("--checkpoint", type=str, default=None, help="Continue the training from checkpoint.")
32parser.add_argument("--max_iterations", type=int, default=None, help="RL Policy training iterations.")
33parser.add_argument("--export_io_descriptors", action="store_true", default=False, help="Export IO descriptors.")
34parser.add_argument(
35 "--keep_all_info",
36 action="store_true",
37 default=False,
38 help="Use a slower SB3 wrapper but keep all the extra training info.",
39)
40parser.add_argument(
41 "--ray-proc-id", "-rid", type=int, default=None, help="Automatically configured by Ray integration, otherwise None."
42)
43# append AppLauncher cli args
44AppLauncher.add_app_launcher_args(parser)
45# parse the arguments
46args_cli, hydra_args = parser.parse_known_args()
47# always enable cameras to record video
48if args_cli.video:
49 args_cli.enable_cameras = True
50
51# clear out sys.argv for Hydra
52sys.argv = [sys.argv[0]] + hydra_args
53
54# launch omniverse app
55app_launcher = AppLauncher(args_cli)
56simulation_app = app_launcher.app
57
58
59def cleanup_pbar(*args):
60 """
61 A small helper to stop training and
62 cleanup progress bar properly on ctrl+c
63 """
64 import gc
65
66 tqdm_objects = [obj for obj in gc.get_objects() if "tqdm" in type(obj).__name__]
67 for tqdm_object in tqdm_objects:
68 if "tqdm_rich" in type(tqdm_object).__name__:
69 tqdm_object.close()
70 raise KeyboardInterrupt
71
72
73# disable KeyboardInterrupt override
74signal.signal(signal.SIGINT, cleanup_pbar)
75
76"""Rest everything follows."""
77
78import gymnasium as gym
79import logging
80import numpy as np
81import os
82import random
83from datetime import datetime
84
85from stable_baselines3 import PPO
86from stable_baselines3.common.callbacks import CheckpointCallback, LogEveryNTimesteps
87from stable_baselines3.common.vec_env import VecNormalize
88
89from isaaclab.envs import (
90 DirectMARLEnv,
91 DirectMARLEnvCfg,
92 DirectRLEnvCfg,
93 ManagerBasedRLEnvCfg,
94 multi_agent_to_single_agent,
95)
96from isaaclab.utils.dict import print_dict
97from isaaclab.utils.io import dump_yaml
98
99from isaaclab_rl.sb3 import Sb3VecEnvWrapper, process_sb3_cfg
100
101import isaaclab_tasks # noqa: F401
102from isaaclab_tasks.utils.hydra import hydra_task_config
103
104# import logger
105logger = logging.getLogger(__name__)
106# PLACEHOLDER: Extension template (do not remove this comment)
107
108
109@hydra_task_config(args_cli.task, args_cli.agent)
110def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg | DirectMARLEnvCfg, agent_cfg: dict):
111 """Train with stable-baselines agent."""
112 # randomly sample a seed if seed = -1
113 if args_cli.seed == -1:
114 args_cli.seed = random.randint(0, 10000)
115
116 # override configurations with non-hydra CLI arguments
117 env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs
118 agent_cfg["seed"] = args_cli.seed if args_cli.seed is not None else agent_cfg["seed"]
119 # max iterations for training
120 if args_cli.max_iterations is not None:
121 agent_cfg["n_timesteps"] = args_cli.max_iterations * agent_cfg["n_steps"] * env_cfg.scene.num_envs
122
123 # set the environment seed
124 # note: certain randomizations occur in the environment initialization so we set the seed here
125 env_cfg.seed = agent_cfg["seed"]
126 env_cfg.sim.device = args_cli.device if args_cli.device is not None else env_cfg.sim.device
127
128 # directory for logging into
129 run_info = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
130 log_root_path = os.path.abspath(os.path.join("logs", "sb3", args_cli.task))
131 print(f"[INFO] Logging experiment in directory: {log_root_path}")
132 # The Ray Tune workflow extracts experiment name using the logging line below, hence, do not change it (see PR #2346, comment-2819298849)
133 print(f"Exact experiment name requested from command line: {run_info}")
134 log_dir = os.path.join(log_root_path, run_info)
135 # dump the configuration into log-directory
136 dump_yaml(os.path.join(log_dir, "params", "env.yaml"), env_cfg)
137 dump_yaml(os.path.join(log_dir, "params", "agent.yaml"), agent_cfg)
138
139 # save command used to run the script
140 command = " ".join(sys.orig_argv)
141 (Path(log_dir) / "command.txt").write_text(command)
142
143 # post-process agent configuration
144 agent_cfg = process_sb3_cfg(agent_cfg, env_cfg.scene.num_envs)
145 # read configurations about the agent-training
146 policy_arch = agent_cfg.pop("policy")
147 n_timesteps = agent_cfg.pop("n_timesteps")
148
149 # set the IO descriptors export flag if requested
150 if isinstance(env_cfg, ManagerBasedRLEnvCfg):
151 env_cfg.export_io_descriptors = args_cli.export_io_descriptors
152 else:
153 logger.warning(
154 "IO descriptors are only supported for manager based RL environments. No IO descriptors will be exported."
155 )
156
157 # set the log directory for the environment (works for all environment types)
158 env_cfg.log_dir = log_dir
159
160 # create isaac environment
161 env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
162
163 # convert to single-agent instance if required by the RL algorithm
164 if isinstance(env.unwrapped, DirectMARLEnv):
165 env = multi_agent_to_single_agent(env)
166
167 # wrap for video recording
168 if args_cli.video:
169 video_kwargs = {
170 "video_folder": os.path.join(log_dir, "videos", "train"),
171 "step_trigger": lambda step: step % args_cli.video_interval == 0,
172 "video_length": args_cli.video_length,
173 "disable_logger": True,
174 }
175 print("[INFO] Recording videos during training.")
176 print_dict(video_kwargs, nesting=4)
177 env = gym.wrappers.RecordVideo(env, **video_kwargs)
178
179 # wrap around environment for stable baselines
180 env = Sb3VecEnvWrapper(env, fast_variant=not args_cli.keep_all_info)
181
182 norm_keys = {"normalize_input", "normalize_value", "clip_obs"}
183 norm_args = {}
184 for key in norm_keys:
185 if key in agent_cfg:
186 norm_args[key] = agent_cfg.pop(key)
187
188 if norm_args and norm_args.get("normalize_input"):
189 print(f"Normalizing input, {norm_args=}")
190 env = VecNormalize(
191 env,
192 training=True,
193 norm_obs=norm_args["normalize_input"],
194 norm_reward=norm_args.get("normalize_value", False),
195 clip_obs=norm_args.get("clip_obs", 100.0),
196 gamma=agent_cfg["gamma"],
197 clip_reward=np.inf,
198 )
199
200 # create agent from stable baselines
201 agent = PPO(policy_arch, env, verbose=1, tensorboard_log=log_dir, **agent_cfg)
202 if args_cli.checkpoint is not None:
203 agent = agent.load(args_cli.checkpoint, env, print_system_info=True)
204
205 # callbacks for agent
206 checkpoint_callback = CheckpointCallback(save_freq=1000, save_path=log_dir, name_prefix="model", verbose=2)
207 callbacks = [checkpoint_callback, LogEveryNTimesteps(n_steps=args_cli.log_interval)]
208
209 # train the agent
210 with contextlib.suppress(KeyboardInterrupt):
211 agent.learn(
212 total_timesteps=n_timesteps,
213 callback=callbacks,
214 progress_bar=True,
215 log_interval=None,
216 )
217 # save the final model
218 agent.save(os.path.join(log_dir, "model"))
219 print("Saving to:")
220 print(os.path.join(log_dir, "model.zip"))
221
222 if isinstance(env, VecNormalize):
223 print("Saving normalization")
224 env.save(os.path.join(log_dir, "model_vecnormalize.pkl"))
225
226 # close the simulator
227 env.close()
228
229
230if __name__ == "__main__":
231 # run the main function
232 main()
233 # close sim app
234 simulation_app.close()
The Code Explained#
Most of the code above is boilerplate code to create logging directories, saving the parsed configurations, and setting up different Stable-Baselines3 components. For this tutorial, the important part is creating the environment and wrapping it with the Stable-Baselines3 wrapper.
There are three wrappers used in the code above:
gymnasium.wrappers.RecordVideo: This wrapper records a video of the environment and saves it to the specified directory. This is useful for visualizing the agent’s behavior during training.wrappers.sb3.Sb3VecEnvWrapper: This wrapper converts the environment into a Stable-Baselines3 compatible environment.stable_baselines3.common.vec_env.VecNormalize: This wrapper normalizes the environment’s observations and rewards.
Each of these wrappers wrap around the previous wrapper by following env = wrapper(env, *args, **kwargs)
repeatedly. The final environment is then used to train the agent. For more information on how these
wrappers work, please refer to the Wrapping environments documentation.
The Code Execution#
We train a PPO agent from Stable-Baselines3 to solve the cartpole balancing task.
Training the agent#
There are three main ways to train the agent. Each of them has their own advantages and disadvantages. It is up to you to decide which one you prefer based on your use case.
Headless execution#
If the --headless flag is set, the simulation is not rendered during training. This is useful
when training on a remote server or when you do not want to see the simulation. Typically, it speeds
up the training process since only physics simulation step is performed.
./isaaclab.sh -p scripts/reinforcement_learning/sb3/train.py --task Isaac-Cartpole-v0 --num_envs 64 --headless
Headless execution with off-screen render#
Since the above command does not render the simulation, it is not possible to visualize the agent’s
behavior during training. To visualize the agent’s behavior, we pass the --enable_cameras which
enables off-screen rendering. Additionally, we pass the flag --video which records a video of the
agent’s behavior during training.
./isaaclab.sh -p scripts/reinforcement_learning/sb3/train.py --task Isaac-Cartpole-v0 --num_envs 64 --headless --video
The videos are saved to the logs/sb3/Isaac-Cartpole-v0/<run-dir>/videos/train directory. You can open these videos
using any video player.
Interactive execution#
While the above two methods are useful for training the agent, they don’t allow you to interact with the
simulation to see what is happening. In this case, you can ignore the --headless flag and run the
training script as follows:
./isaaclab.sh -p scripts/reinforcement_learning/sb3/train.py --task Isaac-Cartpole-v0 --num_envs 64
This will open the Isaac Sim window and you can see the agent training in the environment. However, this
will slow down the training process since the simulation is rendered on the screen. As a workaround, you
can switch between different render modes in the "Isaac Lab" window that is docked on the bottom-right
corner of the screen. To learn more about these render modes, please check the
sim.SimulationContext.RenderMode class.
Viewing the logs#
On a separate terminal, you can monitor the training progress by executing the following command:
# execute from the root directory of the repository
./isaaclab.sh -p -m tensorboard.main --logdir logs/sb3/Isaac-Cartpole-v0
Playing the trained agent#
Once the training is complete, you can visualize the trained agent by executing the following command:
# execute from the root directory of the repository
./isaaclab.sh -p scripts/reinforcement_learning/sb3/play.py --task Isaac-Cartpole-v0 --num_envs 32 --use_last_checkpoint
The above command will load the latest checkpoint from the logs/sb3/Isaac-Cartpole-v0
directory. You can also specify a specific checkpoint by passing the --checkpoint flag.