Adding a New Robot to Isaac Lab#
Simulating and training a new robot is a multi-step process that starts with importing the robot into Isaac Sim. This is covered in depth in the Isaac Sim documentation here. Once the robot is imported and tuned for simulation, we must define those interfaces necessary to clone the robot across multiple environments, drive its joints, and properly reset it, regardless of the chosen workflow or training framework.
In this tutorial, we will examine how to add a new robot to Isaac Lab. The key step is creating an AssetBaseCfg
that defines
the interface between the USD articulation of the robot and the learning algorithms available through Isaac Lab.
The Code#
The tutorial corresponds to the add_new_robot
script in the scripts/tutorials/01_assets
directory.
Code for add_new_robot.py
1# Copyright (c) 2022-2025, The Isaac Lab Project Developers (https://github.com/isaac-sim/IsaacLab/blob/main/CONTRIBUTORS.md).
2# All rights reserved.
3#
4# SPDX-License-Identifier: BSD-3-Clause
5
6# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
7# All rights reserved.
8#
9# SPDX-License-Identifier: BSD-3-Clause
10
11import argparse
12
13from isaaclab.app import AppLauncher
14
15# add argparse arguments
16parser = argparse.ArgumentParser(
17 description="This script demonstrates adding a custom robot to an Isaac Lab environment."
18)
19parser.add_argument("--num_envs", type=int, default=1, help="Number of environments to spawn.")
20# append AppLauncher cli args
21AppLauncher.add_app_launcher_args(parser)
22# parse the arguments
23args_cli = parser.parse_args()
24
25# launch omniverse app
26app_launcher = AppLauncher(args_cli)
27simulation_app = app_launcher.app
28
29import numpy as np
30import torch
31
32import isaaclab.sim as sim_utils
33from isaaclab.actuators import ImplicitActuatorCfg
34from isaaclab.assets import AssetBaseCfg
35from isaaclab.assets.articulation import ArticulationCfg
36from isaaclab.scene import InteractiveScene, InteractiveSceneCfg
37from isaaclab.utils.assets import ISAAC_NUCLEUS_DIR
38
39JETBOT_CONFIG = ArticulationCfg(
40 spawn=sim_utils.UsdFileCfg(usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/Jetbot/jetbot.usd"),
41 actuators={"wheel_acts": ImplicitActuatorCfg(joint_names_expr=[".*"], damping=None, stiffness=None)},
42)
43
44DOFBOT_CONFIG = ArticulationCfg(
45 spawn=sim_utils.UsdFileCfg(
46 usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/Dofbot/dofbot.usd",
47 rigid_props=sim_utils.RigidBodyPropertiesCfg(
48 disable_gravity=False,
49 max_depenetration_velocity=5.0,
50 ),
51 articulation_props=sim_utils.ArticulationRootPropertiesCfg(
52 enabled_self_collisions=True, solver_position_iteration_count=8, solver_velocity_iteration_count=0
53 ),
54 ),
55 init_state=ArticulationCfg.InitialStateCfg(
56 joint_pos={
57 "joint1": 0.0,
58 "joint2": 0.0,
59 "joint3": 0.0,
60 "joint4": 0.0,
61 },
62 pos=(0.25, -0.25, 0.0),
63 ),
64 actuators={
65 "front_joints": ImplicitActuatorCfg(
66 joint_names_expr=["joint[1-2]"],
67 effort_limit_sim=100.0,
68 velocity_limit_sim=100.0,
69 stiffness=10000.0,
70 damping=100.0,
71 ),
72 "joint3_act": ImplicitActuatorCfg(
73 joint_names_expr=["joint3"],
74 effort_limit_sim=100.0,
75 velocity_limit_sim=100.0,
76 stiffness=10000.0,
77 damping=100.0,
78 ),
79 "joint4_act": ImplicitActuatorCfg(
80 joint_names_expr=["joint4"],
81 effort_limit_sim=100.0,
82 velocity_limit_sim=100.0,
83 stiffness=10000.0,
84 damping=100.0,
85 ),
86 },
87)
88
89
90class NewRobotsSceneCfg(InteractiveSceneCfg):
91 """Designs the scene."""
92
93 # Ground-plane
94 ground = AssetBaseCfg(prim_path="/World/defaultGroundPlane", spawn=sim_utils.GroundPlaneCfg())
95
96 # lights
97 dome_light = AssetBaseCfg(
98 prim_path="/World/Light", spawn=sim_utils.DomeLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75))
99 )
100
101 # robot
102 Jetbot = JETBOT_CONFIG.replace(prim_path="{ENV_REGEX_NS}/Jetbot")
103 Dofbot = DOFBOT_CONFIG.replace(prim_path="{ENV_REGEX_NS}/Dofbot")
104
105
106def run_simulator(sim: sim_utils.SimulationContext, scene: InteractiveScene):
107 sim_dt = sim.get_physics_dt()
108 sim_time = 0.0
109 count = 0
110
111 while simulation_app.is_running():
112 # reset
113 if count % 500 == 0:
114 # reset counters
115 count = 0
116 # reset the scene entities to their initial positions offset by the environment origins
117 root_jetbot_state = scene["Jetbot"].data.default_root_state.clone()
118 root_jetbot_state[:, :3] += scene.env_origins
119 root_dofbot_state = scene["Dofbot"].data.default_root_state.clone()
120 root_dofbot_state[:, :3] += scene.env_origins
121
122 # copy the default root state to the sim for the jetbot's orientation and velocity
123 scene["Jetbot"].write_root_pose_to_sim(root_jetbot_state[:, :7])
124 scene["Jetbot"].write_root_velocity_to_sim(root_jetbot_state[:, 7:])
125 scene["Dofbot"].write_root_pose_to_sim(root_dofbot_state[:, :7])
126 scene["Dofbot"].write_root_velocity_to_sim(root_dofbot_state[:, 7:])
127
128 # copy the default joint states to the sim
129 joint_pos, joint_vel = (
130 scene["Jetbot"].data.default_joint_pos.clone(),
131 scene["Jetbot"].data.default_joint_vel.clone(),
132 )
133 scene["Jetbot"].write_joint_state_to_sim(joint_pos, joint_vel)
134 joint_pos, joint_vel = (
135 scene["Dofbot"].data.default_joint_pos.clone(),
136 scene["Dofbot"].data.default_joint_vel.clone(),
137 )
138 scene["Dofbot"].write_joint_state_to_sim(joint_pos, joint_vel)
139 # clear internal buffers
140 scene.reset()
141 print("[INFO]: Resetting Jetbot and Dofbot state...")
142
143 # drive around
144 if count % 100 < 75:
145 # Drive straight by setting equal wheel velocities
146 action = torch.Tensor([[10.0, 10.0]])
147 else:
148 # Turn by applying different velocities
149 action = torch.Tensor([[5.0, -5.0]])
150
151 scene["Jetbot"].set_joint_velocity_target(action)
152
153 # wave
154 wave_action = scene["Dofbot"].data.default_joint_pos
155 wave_action[:, 0:4] = 0.25 * np.sin(2 * np.pi * 0.5 * sim_time)
156 scene["Dofbot"].set_joint_position_target(wave_action)
157
158 scene.write_data_to_sim()
159 sim.step()
160 sim_time += sim_dt
161 count += 1
162 scene.update(sim_dt)
163
164
165def main():
166 """Main function."""
167 # Initialize the simulation context
168 sim_cfg = sim_utils.SimulationCfg(device=args_cli.device)
169 sim = sim_utils.SimulationContext(sim_cfg)
170
171 sim.set_camera_view([3.5, 0.0, 3.2], [0.0, 0.0, 0.5])
172 # design scene
173 scene_cfg = NewRobotsSceneCfg(args_cli.num_envs, env_spacing=2.0)
174 scene = InteractiveScene(scene_cfg)
175 # Play the simulator
176 sim.reset()
177 # Now we are ready!
178 print("[INFO]: Setup complete...")
179 # Run the simulator
180 run_simulator(sim, scene)
181
182
183if __name__ == "__main__":
184 main()
185 simulation_app.close()
The Code Explained#
Fundamentally, a robot is an articulation with joint drives. To move a robot around in the simulation, we must apply targets to its drives and step the sim forward in time. However, to control a robot strictly through joint drives is tedious, especially if you want to control anything complex, and doubly so if you want to clone the robot across multiple environments.
To facilitate this, Isaac Lab provides a collection of configuration
classes that define which parts of the USD need
to be cloned, which parts are actuators to be controlled by an agent, how it should be reset, etc… There are many ways
you can configure a single robot asset for Isaac Lab depending on how much fine tuning the asset requires. To demonstrate,
the tutorial script imports two robots: The first robot, the Jetbot
, is configured minimally while the second robot, the Dofbot
, is configured with additional parameters.
The Jetbot is a simple, two wheeled differential base with a camera on top. The asset is used for a number of demonstrations and
tutorials in Isaac Sim, so we know it’s good to go! To bring it into Isaac lab, we must first define one of these configurations.
Because a robot is an articulation with joint drives, we define an ArticulationCfg
that describes the robot.
simulation_app = app_launcher.app
import numpy as np
import torch
import isaaclab.sim as sim_utils
from isaaclab.actuators import ImplicitActuatorCfg
from isaaclab.assets import AssetBaseCfg
from isaaclab.assets.articulation import ArticulationCfg
from isaaclab.scene import InteractiveScene, InteractiveSceneCfg
from isaaclab.utils.assets import ISAAC_NUCLEUS_DIR
This is the minimal configuration for a robot in Isaac Lab. There are only two required parameters: spawn
and actuators
.
The spawn
parameter is looking for a SpawnerCfg
, and is used to specify the USD asset that defines the robot in the sim.
The Isaac Lab simulation utilities, isaaclab.sim
, provides us with a USDFileCfg
class that consumes a path to our USD
asset, and generates the SpawnerCfg
we need. In this case, the jetbot.usd
is located
with the Isaac Assets under Robots/Jetbot/jetbot.usd
.
The actuators
parameter is a dictionary of Actuator Configs and defines what parts of the robot we intend to control with an agent.
There are many different ways to update the state of a joint in time towards some target. Isaac Lab provides a collection of actuator
classes that can be used to match common actuator models or even implement your own! In this case, we are using the ImplicitActuatorCfg
class to specify
the actuators for the robot, because they are simple wheels and the defaults are fine.
Specifying joint name keys for this dictionary can be done to varying levels of specificity.
The jetbot only has a few joints, and we are just going to use the defaults specified in the USD asset, so we can use a simple regex, .*
to specify all joints.
Other regex can also be used to group joints and associated configurations.
Note
Both stiffness and damping must be specified in the implicit actuator, but a value of None
will use the defaults defined in the USD asset.
While this is the minimal configuration, there are a number of other parameters we could specify
JETBOT_CONFIG = ArticulationCfg(
spawn=sim_utils.UsdFileCfg(usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/Jetbot/jetbot.usd"),
actuators={"wheel_acts": ImplicitActuatorCfg(joint_names_expr=[".*"], damping=None, stiffness=None)},
)
DOFBOT_CONFIG = ArticulationCfg(
spawn=sim_utils.UsdFileCfg(
usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/Dofbot/dofbot.usd",
rigid_props=sim_utils.RigidBodyPropertiesCfg(
disable_gravity=False,
max_depenetration_velocity=5.0,
),
articulation_props=sim_utils.ArticulationRootPropertiesCfg(
enabled_self_collisions=True, solver_position_iteration_count=8, solver_velocity_iteration_count=0
),
),
init_state=ArticulationCfg.InitialStateCfg(
joint_pos={
"joint1": 0.0,
"joint2": 0.0,
"joint3": 0.0,
"joint4": 0.0,
},
pos=(0.25, -0.25, 0.0),
),
actuators={
"front_joints": ImplicitActuatorCfg(
joint_names_expr=["joint[1-2]"],
effort_limit_sim=100.0,
velocity_limit_sim=100.0,
stiffness=10000.0,
damping=100.0,
),
"joint3_act": ImplicitActuatorCfg(
joint_names_expr=["joint3"],
effort_limit_sim=100.0,
velocity_limit_sim=100.0,
stiffness=10000.0,
damping=100.0,
),
"joint4_act": ImplicitActuatorCfg(
joint_names_expr=["joint4"],
effort_limit_sim=100.0,
velocity_limit_sim=100.0,
This configuration can be used to add a Dofbot to the scene, and it contains some of those parameters.
The Dofbot is a hobbiest robot arm with several joints, and so we have more options available for configuration.
The two most notable differences though is the addition of configurations for physics properties, and the initial state of the robot, init_state
.
The USDFileCfg
has special parameters for rigid bodies and robots, among others. The rigid_props
parameter expects
a RigidBodyPropertiesCfg
that allows you to specify body link properties of the robot being spawned relating to its behavior
as a “physical object” in the simulation. The articulation_props
meanwhile governs the properties relating to the solver
being used to step the joints through time, and so it expects an ArticulationRootPropertiesCfg
to be configured.
There are many other physics properties and parameters that can be specified through configurations provided by isaaclab.sim.schemas
.
The ArticulationCfg
can optionally include the init_state
parameter, that defines the initial state of the articulation.
The initial state of an articulation is a special, user defined state that is used when the robot is spawned or reset by Isaac Lab.
The initial joint state, joint_pos
, is specified by a dictionary of floats with the USD joint names as keys (not the actuator names).
Something else worth noting here is the coordinate system of the initial position, pos
, which is that of the environment.
In this case, by specifying a position of (0.25, -0.25, 0.0)
we are offsetting the spawn position of the robot from the origin of the environment, and not the world.
Armed with the configurations for these robots, we can now add them to the scene and interact with them in the usual way
for the direct workflow: by defining an InteractiveSceneCfg
containing the articulation configs for the robots …
),
},
)
class NewRobotsSceneCfg(InteractiveSceneCfg):
"""Designs the scene."""
# Ground-plane
ground = AssetBaseCfg(prim_path="/World/defaultGroundPlane", spawn=sim_utils.GroundPlaneCfg())
# lights
dome_light = AssetBaseCfg(
prim_path="/World/Light", spawn=sim_utils.DomeLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75))
)
…and then stepping the simulation while updating the scene entities appropriately.
# robot
Jetbot = JETBOT_CONFIG.replace(prim_path="{ENV_REGEX_NS}/Jetbot")
Dofbot = DOFBOT_CONFIG.replace(prim_path="{ENV_REGEX_NS}/Dofbot")
def run_simulator(sim: sim_utils.SimulationContext, scene: InteractiveScene):
sim_dt = sim.get_physics_dt()
sim_time = 0.0
count = 0
while simulation_app.is_running():
# reset
if count % 500 == 0:
# reset counters
count = 0
# reset the scene entities to their initial positions offset by the environment origins
root_jetbot_state = scene["Jetbot"].data.default_root_state.clone()
root_jetbot_state[:, :3] += scene.env_origins
root_dofbot_state = scene["Dofbot"].data.default_root_state.clone()
root_dofbot_state[:, :3] += scene.env_origins
# copy the default root state to the sim for the jetbot's orientation and velocity
scene["Jetbot"].write_root_pose_to_sim(root_jetbot_state[:, :7])
scene["Jetbot"].write_root_velocity_to_sim(root_jetbot_state[:, 7:])
scene["Dofbot"].write_root_pose_to_sim(root_dofbot_state[:, :7])
scene["Dofbot"].write_root_velocity_to_sim(root_dofbot_state[:, 7:])
# copy the default joint states to the sim
joint_pos, joint_vel = (
scene["Jetbot"].data.default_joint_pos.clone(),
scene["Jetbot"].data.default_joint_vel.clone(),
)
scene["Jetbot"].write_joint_state_to_sim(joint_pos, joint_vel)
joint_pos, joint_vel = (
scene["Dofbot"].data.default_joint_pos.clone(),
scene["Dofbot"].data.default_joint_vel.clone(),
)
scene["Dofbot"].write_joint_state_to_sim(joint_pos, joint_vel)
# clear internal buffers
scene.reset()
print("[INFO]: Resetting Jetbot and Dofbot state...")
# drive around
if count % 100 < 75:
# Drive straight by setting equal wheel velocities
action = torch.Tensor([[10.0, 10.0]])
else:
# Turn by applying different velocities
action = torch.Tensor([[5.0, -5.0]])
scene["Jetbot"].set_joint_velocity_target(action)
# wave
wave_action = scene["Dofbot"].data.default_joint_pos
wave_action[:, 0:4] = 0.25 * np.sin(2 * np.pi * 0.5 * sim_time)
scene["Dofbot"].set_joint_position_target(wave_action)
scene.write_data_to_sim()
Note
You may see a warning that not all actuators are configured! This is expected because we don’t handle the gripper for this tutorial.
